<table>
<thead>
<tr>
<th>Time</th>
<th>Week 1</th>
<th>Week 2</th>
<th>Week 3</th>
<th>Week 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 am</td>
<td>[HR] An inquiry-based approach to group theory (Katharine)</td>
<td>Combinatorics of tableaux (Emily & Kayla)</td>
<td>Bairely complete (Ben)</td>
<td>(Relatively) prime complex numbers (Emily)</td>
</tr>
<tr>
<td></td>
<td>Cut that out! (Zach Abel)</td>
<td>Graphs on surfaces (Marisa)</td>
<td>Congruences of Bernoulli numbers and zeta values (Eric)</td>
<td>Complexity theory (Linus)</td>
</tr>
<tr>
<td></td>
<td>Determinantal formulas (Kaya)</td>
<td>Introduction to number theory (Mark)</td>
<td>Geometric programming (Misha)</td>
<td>The John Conway Hour (Mira & Misha)</td>
</tr>
<tr>
<td></td>
<td>Introduction to graph theory (Misha)</td>
<td>Markov chains and random walks (Misha)</td>
<td>Gothic windows (Kinga)</td>
<td>The Kakeya needle problem (Alan)</td>
</tr>
<tr>
<td></td>
<td>[HR] Teaching math to computers (Apurva)</td>
<td>Oh the sequences you’ll know (Zach Abel)</td>
<td>Regular expressions and generating functions (Linus)</td>
<td>Uncertainty principle (Neeraja)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 am</td>
<td>Cubic curves (Mark)</td>
<td>[HR] Clopen for business: an inquiry-based approach to point-set topology (Katharine)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hyperplane arrangements (Emily)</td>
<td>Conflict-free graph coloring (Pesto)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Integration on manifolds (Neeraja)</td>
<td>Quantum mechanics (Andrew Guo)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction to linear algebra (Linus)</td>
<td>Ramanujan graphs, quaternions, and number theory (Don Galotta)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[HR] The bell curve (Mira)</td>
<td>Weierstrass approximation (Neeraja)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hilbert’s space-filling curve (Ben)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Don’t worry, these cats don’t bite! (Basic category theory)</td>
<td>A Rubik’s cube-based approach to group theory (Alan & Dennis)</td>
<td>Classifying complex semisimple Lie algebras (Kayla)</td>
<td>Combinatorial game theory (Tim!)</td>
</tr>
<tr>
<td>Noon</td>
<td>[HR] Fourier something something boolean functions (Tim!)</td>
<td>Cantor, Fourier, and the first uncountable ordinal (Ben)</td>
<td>Geometry of lattices (J-Lo)</td>
<td>[HR] Connections to category theory (Katharine)</td>
</tr>
<tr>
<td></td>
<td>[HR] Introduction to analysis (Alan)</td>
<td>[HR] Introduction to ring theory (Eric)</td>
<td>Grammatical group generation (Eric)</td>
<td>Extremal graph theory (Mia)</td>
</tr>
<tr>
<td></td>
<td>[HR] Majorizing-Comparisons Solving of Problems (Pesto)</td>
<td>Modeling computation (Mia)</td>
<td>[HR] Information theory (Mia)</td>
<td>Fair squares (mod p) (Maya)</td>
</tr>
<tr>
<td></td>
<td>[HR] Mathcamp crash course (Susan)</td>
<td>Wallis and his product (Jon Tannenhaus)</td>
<td>The Plünnecke–Ruzsa inequality (Milan)</td>
<td>Functions you can’t integrate (Ben)</td>
</tr>
</tbody>
</table>

Key: [HR]—Homework Required