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9:10 Classes

A curious connection between p-adic distances and triangulations of a square ( , Char-
lotte, TWΘFS )
If you’re given a square, you could find a way to divide it into an even number of triangles of equal
area. Now try dividing it into an odd number of triangles of equal area!

Well, you probably didn’t, because you can’t, a fact which is known as Monsky’s theorem. What’s
lovely about the proof of Monsky’s theorem is that it is entirely unexpected: its main tool is algebraic,
the 2-adic valuation (which is closely related to the 2-adic numbers, and gives a different way of
measuring “distance” between points). We’ll use 2-adic valuations to coulour the plane, and see some
slick combinatorial arguments.

Homework: Recommended

Prerequisites: Familiarity with metrics, and the definitions and basic properties of groups, rings, sub-
rings, invertible elements of rings, and quotients of groups

Ancient Greek mathematics ( , Yuval, TWΘFS )
You may have heard some crazy stories about ancient Greek mathematicians:

• Pythagoras proved the Pythagorean theorem, but also hated beans. Also, he killed someone
for figuring out that

√
2 is irrational.

• Euclid once sassed King Ptolemy I by telling him “there is no royal road to geometry”.
• Archimedes shouted “Eureka!” in the bathtub, ran down the streets of Syracuse naked, and
later invented a giant mirror to burn attacking Roman ships.

• The Greeks tried really hard to square the circle, but never could. In 1882, von Lindemann
proved that squaring the circle is impossible.

Sadly, probably none of these stories is true.
Wait, what? None of them is true? What about Pythagoras proving the Pythagorean theorem?

Turns out that probably didn’t happen.
But the truths about ancient Greek mathematics are, perhaps, even crazier than the myths.

• Rather than being sad about irrational numbers, the Greeks loved and were obsessed with
them.

• Eudoxus essentially invented Dedekind cuts, and thus the formal theory of the real numbers,
2250 years before Dedekind.
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• Euclid sort of proved the infinitude of the primes, but his proof only really implies that there
are at least four primes.

• The Greeks were actually really good at squaring the circle! They came up with three different
methods, von Lindemann’s “proof of impossibility” notwithstanding.

• Archimedes essentially invented integrals, and used them to compute areas and volumes of
crazy shapes (parabolas, spirals, spheres) 1900 years before the “real” invention of calculus.
He also invented systems for expressing huge numbers, initiated the field of mathematical
physics, and proved perhaps the most difficult and complicated theorem proved until the 19th
century.

This class is all about ancient Greek mathematics. We’ll learn both about what mathematics
they did—including some shockingly difficult, complicated, and beautiful proofs—and about how they
thought about mathematics. In many cases, they thought about mathematics in more or less the same
way we do (and, indeed, our mathematics continues a tradition directly inherited from the Greeks),
but in other cases, it can feel like speaking to an alien. For example, would you have guessed that
these pictures depict, respectively, two circles and a proof of the Pythagorean theorem?

Homework: Recommended

Prerequisites: None

Baire necessities for Banach–Tarski ( , Narmada, TWΘFS )
If you give a mathematician a proof of the Banach–Tarski paradox, she will tear it apart into finitely
many pieces and reassemble it into two proofs of the paradox. We’ll look at the first proof of the
Banach–Tarski paradox (which was mostly due to Hausdorff) that manipulates the free group. Then
we’ll look at the poggers proof that uses graph theory to prove an even stronger version of the paradox:
you can force the pieces in your decomposition to be topologically nice. What’s with the Baire in the
title? Come to class to find out!

Homework: Optional

Prerequisites: Know what graphs and groups are

Problem solving: cheating in geometry ( → , Zack, TWΘFS )
Geometry is hard. Sometimes you can bash geometry problems with algebra, but algebra is hard too.
Everything would really be a lot nicer if geometry were easy, like if every pair of lines intersected or
if every circle passed through the same two points. Helpfully, projective geometry (motto: “what if
geometry were better”) exists! In projective geometry, everything is great, lines and curves behave how
they should, and geometry is easy.1 We’ll build some intuition for projective space through examples,
and discover some geometric and algebraic tools which will sometimes allow us to solve hard geometry
problems quickly and easily, in particular the somewhat infamous “method of moving points.” Side

1OK, maybe not easy, but at least there aren’t any angles.
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effects may include, but are not limited to: an inability to return to thinking about angles and lengths,
a tendency to write solutions that will make your graders sad, and following every sentence with “you
know, this would really be a lot nicer over CP2 . . . ”

Homework: Required

Prerequisites: None—in particular, no experience with olympiad geometry will be assumed.

The distribution of prime numbers ( , Viv, TWΘFS )
What is the distribution of prime numbers?

This question is really vague, and encompasses a lot of other questions. Questions like:

• How many prime numbers are there? For a fixed x > 0, how many primes are there less than
x? How precisely can we count them?

• How many twin primes are there (that is, primes p where p + 2 is also prime)? Are there
infinitely many?

• What is the biggest gap between two primes that are less than x? How frequently is the gap
between two consecutive primes small? How frequently is it big?

• What is the distribution of final digits of primes? What about final digits of pairs of consecutive
primes?

Many of these questions are. . . hard. Like, really really hard. For example, Wikipedia says that
the Twin Primes Conjecture, which states that there are infinitely many primes, “has been one of the
great open questions in number theory for many years.” Instead of trying to answer these questions,
we’ll do our best to understand what the answers should be, and why. Along the way, we’ll develop and
evaluate a random model for prime numbers, and discuss my favorite conjectures (for some definition
of favorite).

Homework: Recommended

Prerequisites: Some basic number theory is helpful; specifically, being comfortable with modular arith-
metic is helpful, as well as the Chinese Remainder Theorem.

10:10 Classes

Algebraic topology: homology ( , Zoe, TWΘFS )
Whenever faced with real wonky situations in mathematics, our usual end goal is to try to get a
comparison to a situation we actually know things about. Homology takes whatever weird space one
could think of, and gives us a way to measure how close that space is to any n-dimensional hole. In
this class, you will learn efficient ways to compute homology as well what homology can give us when
analyzing a problem.

Homework: Recommended

Prerequisites: Group theory and Linear algebra (not strict prereqs, feel free to talk to me about what
exactly is needed).

Commutative algebra and algebraic geometry (week 2) ( → , Mark, TWΘFS )
This class, which was originally announced as “TBD”, will be a continuation of the week 3 class. If
you didn’t take the class last week and you would like to join now, it’s probably a good idea to consult
with Mark first.

Homework: Recommended

Prerequisites: Commutative algebra and algebraic geometry (week 1)



MC2022 ◦ Week 4 ◦ Classes 4

High-dimensional potatoes ( , Travis, TWΘFS )
Have you ever looked at a potato? Like, really looked at it? Did you then think that they would be
cooler if they had a few more dimensions, like maybe 573 of them? Perfect. We’ll take a deep dive into
high-dimensional potatoes, answering such questions as: When can potatoes intersect? How hard is it
to specify a point inside a potato? Is it always possible to split them in half? The mysteries abound!

If you want to see what happens in high dimensions without needing any integrals, switch your diet
from oranges to potatoes!

Homework: Recommended

Prerequisites: Linear algebra (familiarity with the real vector space Rd and linear independence)

The abc’s of polynomialand ( , Eric, TWΘFS )
Constants. Irreducibles. Squares. Monics. Long ago, the elements of Polynomialand lived together
in harmony. Then, everything changed when Queen Polynomia went missing. Only the Wronskian,
which could mediate to a degree between the feuding factions of abecedarians and radicals, could keep
Polynomialand stable in her absence, but when the polynomials needed it most, they forgot about how
it worked. A hundred years passed, and Mathcampers re-discovered the Wronskian. And although
their understanding of integers is great, they have a lot to learn before they’re ready to save any
polynomials. But I believe that Mathcampers can save Polynomialand!

(This is still a math class! It’s about the abc conjecture from a perspective: what it is, why
it’s hard, and mostly why the polynomial version is more straightfoward. This class will just also be
. . . silly in the way described above.)

Homework: Recommended

Prerequisites: You should be comfortable with unique factorization and the Euclidean algorithm for
integers; Mark’s intro number theory class is more than enough.

The satisfiability problem ( , Misha, TWΘFS )
Questions like

• “Does this Sudoku have a solution?”
• “Is there a red-blue coloring of {1, 2, . . . , 9} with no monochromatic 3-term arithmetic progres-
sion?”

• “Does this 2048-bit integer factor into two 1024-bit integers?”

have one thing in common. Each one can be expressed as a formula whose variables are not numbers
but Boolean values: true or false. The Boolean satisfiability problem is to choose the values of these
variables to satisfy the formula: make it true.

This problem is notoriously difficult—it is the first problem proven to be NP-complete. (This means
that if we find a polynomial-time algorithm to solve it, we get a million dollars.) Most computer
scientists are happy to say that there is no known algorithm significantly better than the O(2n)
algorithm that tries all possible values of n variables.

But “significantly better” can have multiple meanings. An O(n·(
√
3)n) algorithm is still exponential,

but it can sometimes mean the difference between solving a problem in minutes or in hours. And
(spoiler alert!) we’ll be able to do better than O(n · (

√
3)n) by the end of this class.

Homework: Recommended

Prerequisites: None

11:10 Classes

Cantor before set theory ( , Ben, TWΘFS )
If you’ve ever looked into the history of set theory, you might have read that it came about because
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of Georg Cantor’s investigations into the infinite, motivated by his work in real analysis. One might
wonder—what question was Cantor trying to answer, that made him start thinking about the nature
of infinite sets?

In the 1800s, trigonometric series became a major area of study due to the work of Joseph Fourier.
A lot of this work centered on what kinds of functions could be written in the form

a0 +

∞∑
n=1

(an cos(nx) + bn sin(nx)) .

One of Cantor’s colleagues2 asked a different question—if you already know that a function can be
represented by a trigonometric series, could there be more than one? For example, we can represent
the function f(x) = 0 as the trivial trigonometric series where all of the an and bn are taken to be 0.
Is there another way?

In this course, we’ll not only learn the answer to this question, but also see how investigating it sent
Cantor along the road to set theory—into investigations of the infinite.

Homework: Recommended

Prerequisites: Know the difference between uniform and pointwise convergence, know how to take
integrals and derivatives.

Finite fields ( , Aaron, TWΘFS )
Fields are everywhere in math, but usually we encounter infinite fields such as Q,R, and C.

In this class, we’ll explore the finite fields! These are useful all over math, both in their own right and
as a miniature test case for the infinite fields you already know. We’ll construct them, see what sizes
they can have, characterize their additive and multiplicative behavior, and see how they fit together.

Homework: Recommended

Prerequisites: Ring theory, linear algebra, with optional group theory.

Knot theory ( , Emily and Kayla, TWΘFS )
Contrary to popular belief, knot theory is not “not theory.” Specifically, it teaches you how you know
when two knots are not the same, and when they are not not the same. Certain knavish knots defy
classification, however, so knowledgeable methods and theoretical theories must be used to distinguish
such gnarly knots. Know naught about knot theory yet? Worry not, for this class is an introduction!

(This blurb was written by Nathan S.)

Homework: Recommended

Prerequisites: None

Mathematical billiards ( , Arya, TWΘFS )
Suppose you have a point-sized ball gliding on a billiard table with a frictionless surface. The trajectory
ends if it goes into a hole, and if it hits the boundary of the table, the ball follows the standard laws
of reflection (the angle of incidence is the same as the angle of reflection). Depending on the shape
of the table, we can ask several questions—how many times can the ball hit a wall before it goes into
a hole? Can it come back to where it started, and keep looping its path in a periodic motion? Is
the trajectory of the ball dense inside your shape? In this class, we shall try to answer some of these
questions and discuss some related open questions.

Homework: Recommended

Prerequisites: None

2Eduard Heine; if you’ve heard of e.g. the Heine–Borel Theorem, it’s that guy.
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Representation theory of finite groups (week 2) ( , Mark, TWΘFS )
This is a continuation of last week’s class of the same name. If you didn’t take the class last week and
you would like to join now, it’s probably a good idea to consult with Mark first.

Homework: Recommended

Prerequisites: Representation theory of finite groups (week 1), Group theory, Linear algebra

1:10 Classes

Algebraic solutions to Painlevé VI ( , Aaron Landesman, TWΘFS )
In 1902, Painlevé introduced six differential equations, the most difficult of which was the so-called
“Painlevé VI.” The algebraic solutions to Painlevé VI were only classified recently in 2014. It turns
out these algebraic solutions correspond to finding certain canonical triples of 2 by 2 matrices. In the
class, we will search for collections of these canonical tuples of matrices. Our search will lead us to
discover a sequence of beautiful connections between group theory, geometry, topology, representation
theory, and algebraic geometry.

Homework: Required

Prerequisites: Linear algebra, Group theory

Chaotic dynamics and elephant drawing ( , Ben, TWΘFS )
In the study of dynamical systems, we have some rule for extrapolating what “things tomorrow” look
like, given what “things today” look like. A practical example of this is the weather; we can consider
this as a dynamical system. But while the weather tomorrow is fairly predictable, and modern weather
forecasting can even extrapolate a week out pretty well, long-term weather forecasting is right out—is
it going to snow in Toronto on 16 December 2022? We won’t know for a while.

This motivates the definition of chaotic dynamical systems, in which small changes to present
conditions may cause large changes in the future (the so-called “butterfly effect”). We will aim to
show that some easily-described discrete dynamical systems are chaotic.

Time permitting, we’ll also use our chaotic dynamical systems for a practical3 purpose: overfitting
data! We’ll see how we can carefully pick a two parameter “model” that can fit any data set almost
perfectly. Our model will be based on a specific dynamical system, and its marvelous overfitting
powers? Are based on the fact that it is chaotic.

Homework: Recommended

Prerequisites: None

Conway’s soldiers ( , Misha, TWΘFS)
Let’s play checkers! Except the pieces jump horizontally and vertically instead of diagonally. Also,
the checkerboard is infinitely large and the opponent is MIA. How far forward can our set of soldiers
step?

You might think that with infinite pieces, through a clever series of jumps, we should be able to
travel infinitely far forward, but in fact the best we can do is exactly 0% of that. Proving this will
reunite us with an old irrational friend and take us through a world of monovariants and power series
that will make you say no (Con)way!

Then, we will go one step further than that—literally. We’ll find out what can happen when are
given the power to do infinitely many things in a finite length of time.

(This blurb was co-written with Lucas.)

Homework: None

3OK, maybe not practical. But fun!
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Prerequisites: None

Electric charge on matchsticks ( , Misha, TWΘFS )
The graph below is called the Harborth graph:

Its edges are matchsticks all of the same length. They never cross, and four of them meet at every
vertex. (We don’t know if it’s the smallest graph of this type.)

We do know that we can’t make a graph like this with five matchsticks meeting at every vertex. We
will prove this by putting electric charges on such a graph, moving them around, and showing that
the graph’s existence would violate conservation of energy.

Then we’ll see what else can be done with the so-called “discharging method”!

Homework: None

Prerequisites: You should know what vertices, edges, and faces of a graph are, and know or be willing
to accept on faith that |V | − |E|+ |F | = 2.

Game theory, traffic, and the price of anarchy ( , Assaf, TWΘFS)
Some schools4 of libertarian and capitalistic thought say that if everyone does what is best for them-
selves, this will be best for society, since each person maximizes their own happiness in the context
of their surroundings. This perspective is the Nash-equilibrium solution to humanity, and as math-
ematicians, we can always ask: “can we do better?” The answer is: “sometimes” and the difference
between the best course of action and the anarchist course of action is called the Price of Anarchy.

This class is an intro to game theory class, where we will talk about combinatorial games, pure and
mixed strategies, and Nash equilibria (and use Brouwer’s fixed point theorem to show that one always
exists!). We will then turn our attention to some real-life examples of Nash equilibria that are not
ideal scenarios, and brainstorm game-changing ways to turn a selfish decision into a decision that is
best for all of the players.

Homework: Recommended

Prerequisites: None

Introduction to Galois theory ( , Sim, TWΘFS )
The Fundamental Theorem of Algebra states that all roots of polynomials with rational coefficients

4but definitely not all!
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lie in the complex numbers C. This feels like a pretty “continuous” result, but what if I told you that
group theory and field theory could prove it?

In this class, we will honor Évariste Galois’ legacy by exploring his namesake field: Galois theory.
We’ll cover field extensions, automorphism groups, and just what makes some field extensions special
enough to be Galois. We’ll think about what these tell us about solutions to polynomial equations, and
how it can prove the Fundamental Theorem of Algebra. Finally, we’ll cover the Fundamental Theorem
of Galois Theory, which beautifully summarizes the relation between fields and Galois groups.

Along the way, we’ll also learn the story of Évariste Galois’ life, one full of trial, tribulation, love,
and death (he died at age 20 under suspicious and miserable circumstances).

Homework: Recommended

Prerequisites: Group theory, Ring theory

Metric spaces ( , Steve, TWΘFS )
A metric space is just a set X of “points” together with a distance function, d, which behaves the way
distance should: the distance between any two points is zero iff they are actually the same point; the
distance between x and y is the distance between y and x; and it is never more efficient to go from x
to y to z than to just go from x to z. The standard examples of metric spaces are things like R (or
the various Rns) with the appropriate Euclidean metric.

However, this is not remotely the end of the story! A metric space can be extremely structurally
complicated, with “points” being interesting objects in their own right. For instance, the set C0[0, 1]
of continuous functions from [0, 1] to [0, 1] forms a metric space with the distance function d(f, g) =
max{|f(x) − g(x)| : x ∈ [0, 1]}. We can also form metric spaces whose points are closed sets in some
other metric space—there is even a metric space of metric spaces!

In the first half of this class, we’ll develop the basic notions of metric space theory: completeness
(and completions), compactness, and various other common ideas and results. In the second half we’ll
look at a few particularly bizarre metric spaces, such as the one alluded to two sentences prior and
(time permitting) a kind of “line” that cannot be cut into two smaller “lines!”

Homework: Recommended

Prerequisites: None

Colloquia

Pure mathematics as applied physics (Tadashi Tokieda, Tuesday)
Humans tend to be better at physics than at mathematics. When an apple falls from a tree, there
are more people who can catch it—we know physically how the apple moves—than people who can
compute its trajectory from a differential equation. Applying physical ideas to discover and establish
mathematical results is therefore natural, even if it has seldom been tried in the history of science.
(The exceptions include Archimedes, some old Russian sources, a recent book by Mark Levi, as well as
my articles.) This lecture presents a diversity of examples, and tries to make them easy for imaginative
beginners and difficult for seasoned researchers.

Graph on, graph off (Narmada, Wednesday)
Way back in the old days of 2004, two Hungarian mathematicians published a paper that changed
the world of graph theory forever. They asked the simple yet powerful question: what if sequences
of graphs could converge? (Actually they asked more complicated questions about statistical physics
and quasirandomness, but those magically transformed into this question.) I will draw several colorful
pictures to convince you that the limit of a sequence of graphs is not a graph at all, but a graphon.
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Join me as I navigate the treacherous waters of the combinatorics of graph homomorphisms to emerge,
unscathed, in a world of integration and measure theory.

Killing the Cookie Monster (Arya, Thursday)
Every TAU, the Cookie Monster shows up bearing cookies and carrots. The Cookie Monster is a
monstrous being with possibly several heads connected to a single body. A camper, fed up with this
practice of snacking, decides to cut off one of the heads of the Cookie Monster. But behold! Two
new heads pop out. Suppose the camper is adamant, and keeps chopping off heads, while the Cookie
Monster keeps popping new heads. Will Nic receive his 3 carrots and a singular Chip-Ahoy, or be
saddened by the demise of the multi-headed messenger? Come find out!

(Don’t try this at home; Rule 0 might be broken.)

Future of Mathcamp (Staff, Friday)
Do you have opinions about what would make Mathcamp better? Then come to this event for
brainstorming and discussion in groups about what we can change in the future.
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