Mathcamp 2020 Four-Week Schedule

Time	Week 1	Week 2		Week 3		Week 4
9 am	An inquiry-based approach to group theory 🌶 (Katharine)	Combinatorics of tableaux クカク (Emily & Kayla)		Bairely complete DD (Ben)		Prime C numbers
	Cut that out! (Zach Abel)	Graphs on surfaces)) (Marisa)		Congruences of Bernoulli numbers and zeta values DDD (Eric)		Complexity theory $\dot{j}\dot{j} \rightarrow \dot{j}\dot{j}\dot{j}$ (Linus)
	Determinantal formulas)) (Kayla)	Introduction to number theory (Mark)		Geometric programming D (Misha)		The John Conway hour (week 2 of 2) $\dot{D} \rightarrow \dot{D}\dot{D}\dot{D}$ (Mira & Misha)
	Introduction to graph theory	Markov chains and random walks グウク (Misha)		Spectral graph theory DD (Ania)		Kakeya 🌶 (Alan)
	Teaching math to computers	Oh the sequences you'll know \hat{J} (Zach Abel)		Regular expressions and generating functions か (Linus)		Uncertainty principle)))) (Neeraja)
10 am	Cubic curves 🌶 🌶 (Mark)	Clopen for business: an inquiry-based approach to point-set topology))) (Katharine)		Extremal set theory: intersecting families <i>j</i> (Neeraja)		Brooks' theorem blues
	Hyperplane arrangements) (Emily)	Conflict-free graph coloring D (Pesto)		Fourier analysis 🌶 (Alan)		How not to prove the Continuum Hypothesis (week 2 of 2)
	Integration on manifolds	Quantum mechanics		FUNdamental groups and friends: an introduction to topological invariants DDD (Katharine)		Representation theory of finite groups (week 2 of 2))))) (Mark)
	Introduction to linear algebra	Ramanujan graphs, quaternions, and number theory (Dan Gulotta)		How not to prove the Continuum Hypothesis (week 1 of 2)		So you like them triangles? ググ (Dennis)
	The bell curve 🌶 🌶 (Mira)	Weierstrass approximation Hilber	rt's space-filling curve グク (Ben)	Representation theory of finite groups (week 1 of 2))))) (Mark)		Solving equations with origami
Noon	Don't worry, these cats don't bite! (Basic category theory)	A Rubik's cube-based approach to group theory D (Alan & Dennis)		Classifying complex semisimple Lie algebras クラウラ (Kayla)		Combinatorial game theory)) (Tim!)
	Fourier something something boolean functions	Cantor, Fourier, and the first uncountable ordinal クククク (Ben)		Geometry of lattices))) (J-Lo)		Connections to category theory
	Introduction to analysis)) (Alan)	Introduction to ring theory) (Eric)		Grammatical group generation $\hat{\mathcal{P}}$ (Eric)	Let's reverse-engineer photoshop \mathcal{D} (Olivia Walch)	Extremal graph theory))) (Mia)
	Majorizing-Comparisons Solving of Problems (Posto) (Pesto)	Modeling computation)) (Mia)		Information theory		Fair squares (mod p)
	$\begin{array}{c} \text{Mathcamp crash course } \boldsymbol{j} \\ \text{(Susan)} \end{array}$	Wallis and his productThe $\hat{\boldsymbol{j}} \rightarrow \hat{\boldsymbol{j}} \hat{\boldsymbol{j}} \hat{\boldsymbol{j}} \hat{\boldsymbol{j}}$ ineq(Jon Tannenhauser) \boldsymbol{j}	e Plünnecke–Ruzsa Juality 🌶 🌶 (Milan)	The John Cor of 2) $\hat{D} \rightarrow \hat{D}_{2}$	way hour (week 1 (Pesto & Tim!)	Functions you can't integrate