
CLASS DESCRIPTIONS—MATHCAMP 2017

Classes

A Crash Course in Axiomatic Probability. (Sam)

This class will be a brisk walk through some of the most fundamental topics in probability. We’ll start
from Kolmogorov’s axioms and build our way through formal notions of independence, conditional
probability, and random variables. By the end of the course, we’ll have sufficient tools to prove some
high-level theory and asymptotic results! We will mostly focus on discrete probability—so if you
haven’t seen much calculus that’s fine—but we will touch briefly on continuous random variables.
Throughout the class, we’ll look at a few fun “applications” of probability. Typically, these will be
applications to other areas of mathematics (like Graph Theory!).

Prerequisites: You should know the following words and corresponding symbols: (finite and countable)
union, intersection, complement, and partition. Calculus will help for 20 minutes of this course. We’ll
also do one or two examples from graph theory, where knowing very basic terminology will be helpful
(edge, vertex, clique, independent set, complete graph), but these are just fun asides and can be safely
ignored.

Advanced Complex Analysis. (Yuval)

This class is mostly a continuation of Mark’s Functions of a Complex Variables class, in which we’ll
be talking about some of my favorite theorems in Complex Analysis. The main goal is to understand
various geometric properties of analytic functions: in particular, it will turn out that analytic functions
are “conformal”, meaning that they preserve all local geometric structure. This means that we expect
analytic functions to be extremely rare and special, and we will prove that indeed they are: in fact,
we will write down a list of all analytic functions from the unit disk to itself. Finally, we will see the
Riemann Mapping Theorem, which tells you that everything I said above is wrong; analytic functions
are actually ubiquitous, and we can find them everywhere.

Along the way, we’ll see many other useful and beautiful theorems, which will allow us to count
zeroes, compute integrals, and find maxima.

Prerequisites: Functions of a Complex Variable (both weeks).

Algorithms to Generate Randomish Numbers. (Sam)

Suppose you wanted to generate a truly random sequence of numbers. You sit down to start flipping
a coin for forever, but shortly realize that this is boring. Instead, suppose you wanted to generate a
sequence of numbers that looked random (so that you could fool your friend Tim!, say, into thinking
that you were playing rock-paper-scissors randomly). How might you do this?

In this class, we’ll introduce some of the methods for generating pseudorandom numbers. We’ll also
look at why some of the, were terrible!

Prerequisites: Basics of modular arithmetic .
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All Things Manifoldy. (Apurva)

Who said that mathematicians are not real doctors, we perform surgeries all the time. In this class we’ll
take baby steps towards understanding manifolds. We’ll learn some of the uber awesome techniques
invented by topologists to study manifolds. We will perform surgeries on manifolds and do origami
using simplices, and by the end of the class you’ll be able to visualize (some) manifolds in higher
dimensions.

Incidentally when Einstein tried to combine special relativity with Newton’s gravity nothing seemed
to work. It took him a decade to finally realize a beautiful solution to the conundrum: our universe is a
4 dimensional manifold and gravity is a measure of how the manifold curves. But what is a manifold?

Prerequisites: None.

Analytic Number Theory. (Djordje Milicevic)

Did you know that a large majority of the numbers with a quadrillion digits have at least 30 but no
more than 40 prime factors? (Really.) If you have a large prime, how far is the next one anyway? Is it
more likely to end in digit 1 or 7? And how hard — or how important — can it be to locate all zeros
of a single function (the Riemann zeta-function) that you can earn a million dollars for doing so, and
what does this have to do with throwing a fair coin?

Hardly any collection of questions appears more disparate than these, but actually they all have two
thing in common: 1) they combine the beautiful and intricate multiplicative structure of the integers
with the concepts and tools of calculus, the study of continuous change, and 2) we will talk about all
of them this week! We will learn about arithmetic functions and their average orders, techniques of
analytic number theory, characters, Riemann zeta function, and prime number theorem, and we will
survey some landmark and contemporary developments in analytic number theory.

Prerequisites: A little familiarity with number theory (divisibility, primes) and with single-variable
calculus. You should know what derivatives and integrals are, but you do not have to have a lot of
experience working with them.

Ancient Greek Mathematics. (Yuval)

You probably know that Pythagoras proved the Pythagorean Theorem, and you may have heard that
Euclid proved the infinitude of the primes. But did you know that Eudoxus basically invented the
Dedekind Cut definition of the real numbers 2500 years before Dedekind, or that Archimedes was
basically doing calculus 1500 years before Newton and Leibniz invented it? You may have heard that
Archimedes yelled “Eureka” in the bathtub when he discovered the law of buoyancy that controls
when things float and when they sink, but did you know that he subsequently used this idea to prove
arguably the most intricate theorem before the 17th century? And you may have heard about the
controversy around Euclid’s famous “Parallel Postulate,” but what does this postulate actually say?

In this class, we’ll be learning about Ancient Greek math, from two separate perspectives: what
they knew, and how they thought about it. In both cases, we’ll see some surprises: they knew much
more than you probably think they do, and they thought about math in a fundamentally different
way from how we think about it today.
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Note: This class has required homework, since I will be assigning you a (fairly small) amount of
reading each day, which we will discuss the following day. In all cases, we will be reading bona fide
Ancient Greek math; if you don’t put in the time to carefully read and think about these, you will get
very little out of the class the following day.

Prerequisites: None.

And That Is Why Birds Shouldn’t Drink Alcohol. (Beatriz)

In the words of Kakutani, “A drunk man will eventually find his way home, but a drunk bird may get
lost forever.” In this class we will study random walks on a d-dimensional lattice Zd. We will prove
that for d ≤ 2, the random walk on Zd is recurrent (meaning the walker returns to its starting point
with probability one), yet for d ≥ 3, it is transient (meaning there is a positive probability that the
walker may not return to its starting point).

Prerequisites: Series.

Banach-Tarski. (Andrew Marks)

The Banach-Tarski paradox is a famous paradox about infinity. It states that a three dimensional ball
can be cut into finitely many pieces which can be reassembled by rotations and translations into two
balls each of which has the same size as the original ball! A consequence of the paradox is that not
every set in three dimensions can be reasonably assigned a “volume”.

We’ll start the course by reviewing cardinality, which is the original way Cantor devised for mea-
suring the size of infinite sets. We’ll then prove the Banach-Tarski paradox using ideas from linear
algebra and set theory. We’ll end with some discussion of how the Banach Tarski paradox is related
to Lebesgue measure – the modern way mathematicians have devised for measuring volume.

Prerequisites: Familiarity with matrices.

Bernoulli Numbers. (Lara)

The Bernoulli numbers {Bm} are a mysterious sequence of rational numbers that arise naturally in
many places. For example, in the Taylor series for trig functions and when studying Pascal’s triangle.
Once we know what Bernoulli numbers are, we’ll use their generating function to better study them and
to gain detailed information about series and insight into understanding the Riemann zeta function.
We’ll prove the von Staudt-Clausen theorem which will tell us for each prime, how pBm behaves (
mod p) and see the beautiful consequences this theorem has.

Prerequisites: Integration and series. To understand everything in the class, you’ll need to know a bit
of complex analysis, but you should follow most of the class without this.
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Calculus without Calculus. (Tim!)

If you’ve taken a calculus class in school, you’ve surely had to do tons and tons of homework problems.
Sometimes, calculus knocks out those problems in no time flat. But other times, the calculus solution
looks messy, inelegant, or overpowered. Maybe the answer is nice and clean, but you wouldn’t know
it from the calculation. Many of these problems can be solved by another approach that doesn’t use
any calculus, is less messy, and gives more insight into what is going on. In this class, you’ll see some
of these methods, and solve some problems yourself. Some example problems that we’ll solve without
calculus:

• Angela is 5 cubits tall and Misha is 3.9 cubits tall, and they are standing 3 cubits apart. You
want to run a string from the top of Angela’s head to the top of Misha’s head that touches
the ground in the middle. What is the shortest length of string you can use?
• Apurva rides a bike around an elliptical track, with axes of length 100 meters and 150 meters.

The front and back wheels (which are 1 meter apart) each trace out a path. What’s the area
between the two paths?
• A dog is standing along an inexplicably straight shoreline. The dog’s person stands 20 meters

way along the shoreline throws a stick 8 meters out into the water. The dog can run along the
shoreline at 6.40 meters per second, and can swim at 0.910 meters per second. What is the
fastest route that the dog can take to get to the stick?
• Where in a movie theater should you sit so that the screen takes up the largest angle of your

vision?
• What’s the area between the curves f(x) = x3/9 and g(x) = x2 − 2x?

Amaze your friends! Startle your enemies! Annoy your calculus teacher!

Prerequisites: We won’t use calculus (that’s the point), but it would be good if you’ve seen it for
context.

Cap-Set Problem: Recent Progress. (Pawe l B., camper teaching project)

Have you ever played the card game SET? If not, run to the game lounge and play it. The picture
on every card has four different features (number, shape, color, filling), each of which can take three
values. We call three cards a SET when they are all different or all the same in each feature. The
goal of the game is to find a SET among 12 cards on the table. As it turns out, it may not always be
possible. One may wonder: “How many cards without a SET can you have on the table?”

Figure 1. All 3 cards have different shapes, colors, and numbers and the same shading.
Hence they form a SET.

A mathematician can imagine a SET card as a point in Fn
3 , n-dimensional space over {0, 1, 2}, for

n = 4. Three points form a SET if they are collinear. The Cap-Set Problem asks, “What is the
maximum number of points in Fn

3 without a collinear triple?”. For more than 30 years in the history
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of analytic combinatorics, nobody could even tell if the answer is of much smaller magnitude than
3n. However, in 2016, Ellenberg and Gijswijt in their groundbreaking paper showed that indeed it
is. What is more, in contrast to the previous Fourier Analysis approaches, they use only elementary
methods.

In this class, I will show you the whole argument that every subset of Fn
3 without a collinear triple

is exponentially smaller than 3n. The basic idea of this approach is a smart use of polynomials and
ranks of matrices.

Prerequisites: Linear algebra (familiarity with vector space and its dimension and matrix and its rank).
Understanding the meaning of P (x), where P is a polynomial in n variables and x is a point in Fn

q .

Choosing Random Numbers. (Misha)

If you want to pick a random number, but you don’t care how, you might as well just roll a die. If
you do care how, you had better do some math first. We’ll do a few random things in this class, but
the main goal is to see a very cute algorithm for doing what seems like magic.

You may know that factoring a 1000-digit number would take a computer thousands of years. But
in this class, I will teach you how to factor a randomly chosen 1000-digit number in just a few minutes
on a computer.

Prerequisites: Willingness to take on faith a few of my arbitrary claims about the values of infinite
sums and products.

Classification of Subgroups of GL2(F`). (Aaron)

What do the platonic solids have to do with 2 by 2 matrices over finite fields? It turns out that
they precisely determine the “exceptional” subgroups of GL2(F`). Here, GL2(F`) denotes the group
of invertible two by two matrices over the finite field F`. In this inquiry-based learning class, you
will discover for yourself the classification of all subgroups of GL2(F`). This classification will slickly
interweave elegant ideas from linear algebra, group theory, geometry, and combinatorics, to determine
all the subgroups of GL2(F`).

Prerequisites: Linear algebra, group theory, finite fields.

Cloudy with a Chance of the Continuum Hypothesis. (Angela)

In the forecast next Wednesday and Thursday: clouds!
Sometimes a cloud is defined to be a visible mass of condensed water vapor floating in the atmo-

sphere, typically high above the ground. Not today. Today, a cloud C about a point p is a subset of
the plane such that for every line through p, C intersects that line at only finitely many points. You
might be wondering why you would care about sets like this. Well, it turns out that clouds are pretty
weird.

Blurby seguey. The cardinality of the natural numbers is typically denoted ℵ0, and the next biggest
size of infinity (the smallest cardinality greater than ℵ0) is denoted ℵ1. The Continuum Hypothesis
is a very famous statement that says that the cardinality of the real numbers is equal to ℵ1; famous
partially because it was the first statement that was proven to be independent of the ZFC axioms of
set theory. Super famous.
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Here’s a simple statement about clouds: three clouds cover the plane. SURPRISE! It turns out this
statement is actually equivalent to the Continuum Hypothesis. In this class we are going to prove the
equivalence of these two statements. Get hyped. #gethypedforclouds

Prerequisites: None.

Coloring Graphs on Surfaces. (Marisa)

The Four Color Theorem tells us that if we want to properly color a graph drawn on the plane, we
need at most four colors to do it. There is a much cooler theorem which says that if you want to draw
a graph on literally any other surface and then properly color the vertices, you will need at most this
many colors:

chr(S) ≤

⌊
7 +

√
49− 24χ(S)

2

⌋
...which looks mildly unattractive, but which you could absolutely prove this week. And in this class,
you will indeed prove this, and check out lots of other interesting properties of graphs on surfaces
along the way. Works for both orientable and non-orientable, to boot.

Prerequisites: Intro Graph Theory or equivalent. We’ll be using concepts from topology (e.g. All
Things Manifoldy), but I’ll cover all the key points in class.

Coloring the Hyperbolic Plane. (Ina)

Here’s a problem: color a plane such that no two points a unit distance apart are the same color.
How many colors do you need? Turns out, nobody knows! Since when this problem was posed in the
1950s, we’ve only known bounds. A newer line of research examines the problem in the hyperbolic
plane, where even finding bounds becomes more complicated-but also, potentially, more achievable.
In this class we’ll begin with our current knowledge about this problem on the flat Euclidean plane.
Then we’ll move into hyperbolic space, exploring current research-either for fun or to give you tools
to dig into this research yourself!

Prerequisites: None.

Combinatorial Gems. (Alfonso & Kevin)

Come join us in a discovery journey or some of combinatorics most precious gems. Each day we will
propose a different problem and we will guide your exploration of it. We promise that every problem
has an unexpected, mind-blowing, beautiful pattern at the end. If you are already familiar with some
of the topics, ask Kevin or Alfonso if they are right for you. Do not look these problems up before
class, or your risk spoiling the pleasure of discovering the answers yourself.
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• Tuesday: Wythoff’s Game. We have a plate with blueberries and strawberries in front of
us. We take turns eating them. In your turn, you may eat as many berries as you want as
long as they are all of the same kind (at least one) or exactly the same number of berries of
both kinds (at least one). Then it is my turn. The player who eats the last berry wins. Will
you beat me?
• Wednesday: Treacherous Chords. Draw a circle. Draw N points on it. Join every pair of

points with a line segment. In how many regions is the circle divided? If you compute this for
N from 1 to 5 and then make a guess for N = 6, your guess will almost certainly wrong.
• Thursday: Pascal Parity. Which numbers in the Pascal triangle are odd?
• Friday: Nim. Let’s play a game. We have various plates with chocolates. We take turns

eating them. In your turn, you may eat as many chocolates as you want as long as they are
all on the same plate. Then it is my turn. The player who eats the last chocolate wins. Will
you beat me?
• Saturday: Error-correcting codes. You place a coin on each square of a chessboard, some

face up and some face down, any way you like. Then you tell Alfonso what your favourite
square is. Alfonso will then flip one single coin of his choice. Then Kevin enters the room, and
looking only a the chessboard, he can guess what your favourite square was. What was their
trick? It is the same strategy that allows them to play 20 questions with a liar.

Prerequisites: None.

Computer Aided Design. (Elizabeth)

Computers are awesome! They can do so many cool things! In particular, if you can imagine some
shape or machine, you can make a computer draw it in 3D. Once the computer knows what it is, then
it can show you what it would like from any angle, and you can tweak it without having to redraw the
whole thing. You can also turn it colors and zoom in on small details. Basically, anything you can do
in your head, you can show to other people, with the computer. In addition, once you have told the
computer about it, the computer can print out pictures or files that let machinists or machines make
the part in real life. Computer aided design is useful for all kinds of things, from making robots to
roller coasters to mathematical shapes.

Prerequisites: None.

Constructive Logic. (Anti Shulman)

In the early 20th century, a group of mathematicians staged a revolt against the prevailing orthodoxy
of mathematical practice, and in particular against the unrestricted use of the law of excluded middle
(“everything is either true or false”). Known as “constructivists”, they insisted that any proof in
mathematics should be a construction, and that non-constructive “existence proofs” should not be
considered proofs at all. At the time, the revolt failed; but the late 20th and early 21st centuries have
experienced a revival of constructive mathematics, based no longer on dogmatic arguments but on
pluralist and pragmatic grounds, such as the increasing importance of computability and the need for
flexibility to describe many different kinds of mathematics.
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In this class we’ll learn the basics of constructive logic, and what you can and can’t do while avoiding
the law of excluded middle. We’ll see that some parts of mathematics (like elementary number theory)
look just about the same constructively, some require small modifications here and there (like calculus),
and others look completely different (like set theory). At the end we’ll explore a few of the magical
things that constructive logic makes possible, such as all functions being continuous, all existence
being computable, and the use of true nilpotent infinitesimals instead of epsilon-delta limits.

Prerequisites: None.

Crash Course on Representation Theory. (Apurva)

One way to study groups is by making them do things to vector spaces and see what happens. Like
every other useful thing in algebra this is inappropriately named as Representation Theory.

For finite groups, study it we shall.

Prerequisites: Group theory and linear algebra.

Cryptography, and How to Attack It. (Linus)

In a normal cryptography course, you’d learn how codes like RSA work.
In this course, you’ll learn how to use math to hack the people who took the other course. You

won’t just learn RSA, Diffie-Hellman, and (maybe) more: you’ll learn how to break the Vigenere
cipher; crack subtly incorrect implementations of RSA; and (theoretically) break the entire Cryptocat
iPhone app circa 2013.

In Week 2, we’ll cover a random selection of more advanced topics in cryptography. The focus shifts
somewhat from attacking bad crypto to “things Linus thinks are cool.” Topics that might show up:

• Why the NSA has been encouraging everyone to use one specific prime p for Diffie-Hellman
• Alice and Bob might want to date each other. Or maybe not. Alice is shy: if she loves Bob,

then she cannot let Bob find out unless Bob loves her too. Bob is similarly shy. How can they
find out whether the love is mutual?
• What does it mean for a sequence to ”look random”?

Prerequisites: Have a good understanding of modular arithmetic. You should have internalized Euler’s
Theorem and the Chinese Remainder Theorem. For Week 2, introductory group theory – enough to
say ”(Z/5Z) · (Z/12Z) is an abelian group isomorphic to Z/60Z.”.
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Cubic Curves. (Mark)

A curve in the x, y-plane is called a cubic curve if it is given by a polynomial equation f(x, y) = 0 of
degree 3. Compared to conic sections (which have degree 2), at first sight cubic curves are unpleasantly
diverse and complicated; Newton distinguished more than 70 different types of them, and later Plücker
made a more refined classification into over 200 types. However, as we’ll see, by using complex numbers
and points at infinity we can bring a fair amount of order into the chaos, and cubic curves have many
elegant and excellent properties. One of those properties in particular, which is about intersections,
will allow us to prove a beautiful theorem of Pascal about hexagons and conic sections, and it will
also let us define a group structure on any cubic curve - well, almost. We may have to leave out a
singular (“bad”) point first, but a cubic curve has at most one such point (which may be well hidden;
for example, y = x3 has one!), and most of them don’t have any. Cubic curves without singular points
are known as elliptic curves, and they are important in number theory, for example in the proof of
Wiles’ Theorem (a.k.a. “Fermat’s Last Theorem”). However, in this week’s class we probably won’t
look at that aspect at all, and no knowledge of number theory (or even groups) is required. With
any luck, along the way you’ll pick up some ideas that extend beyond cubic curves, such as how to
deal with points at infinity (using “homogeneous coordinates”), what to expect from intersections,
and where to look for singular points and for inflection points.

Prerequisites: Mild use of differential calculus, probably including partial derivatives; complex num-
bers; some use of determinants. Group theory not required.

Decomposing and Factoring. (Marisa)

Some math friends of mine once called up a professional football league (the American kind of football)
and offered to design them a better schedule, and the league took them up on it.1 This is how I imagine
that conversation going.

Mathematicians: Your schedule is a mess. We’d like to make it better.
League: ??
Mathematicians: Trust us. We have design theory.
League: Fine. We have eight teams, and we want four games per week, for seven weeks,
and no team can play two games on the same day, and every team will play every other
team.
Mathematicians: Here is a 1-factorization of K8. Boom.
League: Neat. Here is $1,000.

In this class, we’ll be talking about design theory: from Kirkman’s discovery in 1847 of what would
(over Kirkman’s strong objection) later be called Steiner triple systems, through perfect matchings
in 1891 (when Petersen published his paper “The Theory of Regular Graphs”), to systems of distinct
representatives and Hall’s Theorem in 1935, and all the way up to 2012 when Alpach’s Conjecture
about cycle decompositions of Kn was finally proved.

Prerequisites: Intro Graph Theory or equivalent; really, all you need to know is what Kn and Cn mean.

1http://www.nytimes.com/2001/02/03/arts/what-good-is-math-an-answer-for-jocks.html
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Discrete Derivatives. (Tim!)

Usually, we define the derivative of f to be the limit of f(x+h)−f(x)
h as h goes to 0. But suppose we’re

feeling lazy, and instead of taking a limit we just plug in h = 1 and call it a day. The thing we get is
kind of a janky derivative: it’s definitely not a derivative, but it acts sort of like one. It has its own
version of the power rule, the product rule, and integration by parts, and it even prefers a different
value of e. We’ll take an expedition into this bizarre parallel universe. Then we’ll apply what we find
to problems in our own universe. We’ll talk about Stirling numbers and solve difference equations and
other problems involving sequences.

Prerequisites: Calculus (derivatives).

Division Rings. (Susan)

We know that rings have addition, subtraction, and multiplication. But where does division fit into
this picture? Dividing, in the context of a ring, is essentially multiplying by a multiplicative inverse.
But these inverses don’t always exist. In the commutative setting, the field of fractions construction
allows us to add inverses to a ring that did not previously have them.

In the noncommutative setting things are. . . not so nice. In this class, we’ll see an example of a
noncommutative domain that cannot be embedded into any division ring. We’ll look at Ore domains,
the closest noncommutative analogue of an integral domain, and see how we can expand it into an
Ore Division Ring of Fractions. We’ll see twisted Hilbert polynomials, which we can transform into
Laurent division rings. We’ll also explore the idea of inversion height, and encounter the mystery of
what happens to the number three!

Prerequisites: Ring Theory.

Elliptic Functions. (Mark)

Complex analysis, meet elliptic curves! Actually, you don’t need to know anything about elliptic curves
to take this class, but they will show up along the way. Meanwhile, if you like periodic functions, such as
cos and sin, then you should like elliptic functions even better: They have two independent (complex)
periods, as well as a variety of nice properties that are relatively easy to prove using some complex
analysis. Despite the name, which is a kind of historical accident (it all started with arc length along
an ellipse, which comes up in the study of planetary motion; this led to so-called elliptic integrals, and
elliptic functions were first encountered as inverse functions of those integrals), elliptic functions don’t
have much to do with ellipses. Instead, they are closely related to cubic curves, and also to modular
forms. If time permits, we’ll use some of this material to prove the remarkable fact that

σ7(n) = σ3(n) + 120
n−1∑
k=1

σ3(k)σ3(n− k),

where σi(k) is the sum of the i-th powers of the divisors of k. (For example, for n = 5 this comes
down to

1 + 57 = 1 + 53 + 120[1(13 + 23 + 43) + (13 + 23)(13 + 33) + (13 + 33)(13 + 23) + (13 + 23 + 43)1] ,

which you are welcome to check if you run out of things to do.)

Prerequisites: Functions of a Complex Variable (in particular, Liouville’s theorem and the residue
theorem).
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Euler Characteristic. (Apurva)

Euler characteristic is a benign number that is computed by counting vertices and edges of graphs.
This single number explains why a cyclone should have an eye, why you can eat a pizza without
spilling all the toppings and why my hair looks messy no matter how much gel I apply. The entire
branch of algebraic topology was invented to rationalize the existence of so powerful an invariant.

In this class we’ll understand what it means for the Euler characteristic to be an invariant of surfaces
and explore several geometric manifestations of it. We’ll see proofs of the Sperner’s lemma, Brouwer’s
fixed point theorem, hairy ball theorem and Gauss-Bonnet theorem using Euler characteristic.

Prerequisites: None.

Evasiveness. (Tim!)

We’ll explore a conjecture in computer science that has been open for over 40 years, concerning the
complexity of graph properties. One way to measure the complexity of a problem (like “Does this
graph have a Hamiltonian cycle?”) is by its time complexity — roughly, how long it takes a computer
to solve it. Another important way to measure complexity is query complexity — roughly, how many
questions you need to ask about the graph to answer the problem. The graph properties with maximum
query complexity are called evasive, and the conjecture is that a huge class of graph properties —
specifically, all those that are nontrivial and monotone — are evasive.

We’ll trace the story of this conjecture through time from its conception in 1973, through a surpris-
ing appearance of topology in 1984, to the present day, including research from the past few years.
Along the way, we’ll see scorpion graphs, clever counting, collapsible simplicial complexes, transitive
permutation groups, and hypergraph properties.

This class is directly related to my research, and in class we’ll see a recent result of mine, along
with its proof.

Prerequisites: Group theory (normal subgroups, quotient groups). If you haven’t seen graph theory,
talk to me first.

Every natural is “Fibonacci”: Games, Miles and Kilometres. (Beatriz)

In this class we will prove Zeckendorf’s theorem which states that every positive integer can be rep-
resented uniquely as the sum of one or more distinct Fibonacci numbers in such a way that the sum
does not include any two consecutive Fibonacci numbers. This theorem has many very interesting
application. In this class we will see how Fibonacci numbers can help us win the following game:

There is one pile of n stones. The first player may remove as many as they like on their first turn
as long as they remove at least one and leave at least one. From then on, the next player may remove
no more than their opponent did on their previous turn. The player who takes the last coin wins.

Also, because Mathcamp is so international, and I want to help you understand each other, we’ll
learn how to use Fibonacci numbers to easily convert from miles to kilometres and vice versa.

Prerequisites: None.
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Exclusion-Inclusion. (Po-Shen Loh)

We all know that |A ∪B| = |A|+ |B| − |A ∩B|, and there’s some generalization of this to n sets. So
we will not discuss that at all, and talk about other things, like spheres and the exclusive-or operator.
We will discover that lots of ideas are connected.

Prerequisites: |a ∪ b| = |a|+ |b| − |a ∩ b|.

Fast Matrix Multiplication. (Yuval)

Some of my favorite algorithmic questions are related to a task that might seem pretty uninteresting,
namely that of multiplying together two big matrices. In this class we will see how you can multiply
together matrices way faster than you might have expected. Additionally, we’ll talk about a big open
problem in the field, which basically says that multiplying together two matrices is no harder than
just looking at them. Finally, we’ll talk a bit about how people are trying to prove this conjecture,
and about some recent theorems that say all such attempts simply can’t work.

Prerequisites: Know how matrix multiplication works! Also, some small background with algorithms
will be helpful, but not necessary.

Finite Fields. (Aaron)

What do the rational numbers, complex numbers, and real numbers have in common, but not share
with the integers? They are all fields; we can add, subtract, multiply, and divide elements in them. But
which finite sets also have these properties? What possible sizes can such a finite set have? What are
the possible subfields? These questions all have simple, beautiful answers which we will present in this
course. Finite fields are crucially used throughout number theory, algebraic geometry, cryptography,
and coding theory.

Prerequisites: Linear algebra, group theory.

Finite Geometries. (J-Lo)

There are infinitely many points in the Euclidean plane. Just think, all those points that no human
being will ever use - what a waste! Suppose instead that we limit our geometrical landscape to having
finitely many points - how much geometry could we reproduce? Can we meaningfully talk about
distance? Lines? Circles? Angles? Trigonometry? Come to play around in these surprisingly small
worlds and rewire your intuition for what various geometric concepts “look like” - and along the way,
discover Elliptic Curve Cryptography, the state of the art in NSA-certified internet security protocols.

Prerequisites: None.

Finite “Sets”. (Don)

What makes something finite? Is it that it has finitely many elements? What if it doesn’t, techncially
speaking, have any elements?
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Come learn how Category Theory can tell us what properties really make an object finite - and
then see some objects that, despite having infinitely many elements, have put in the hard work to
truly earn the title of Finite.

Prerequisites: None.

Fractals and Dimension. (Steve)

The usual three dimensions are fun and all, but they get kind of boring after a while. One way to liven
things up is to add more dimensions; billion-dimensional shapes are probably super cool! But you
know what I like even more than big numbers? Wrong numbers. I want a two-and-a-half-dimensional
shape. Or a π-dimensional shape. Or a shape with a decent number of dimensions, but for terrible
reasons.

It turns out we can make this happen! The answer is fractals, a particularly weird and beautiful
kind of shape. Fractals crop up throughout mathematics in all sorts of weird ways, and have lots
of fascinating properties *besides* just being dimensionally weird. This class will be about what
dimensions are, why fractals have silly numbers of them, and how awesome fractals are.

Prerequisites: None.

From the Intermediate Value Theorem to Chaos. (Beatriz)

The Intermediate Value Theorem is a theorem that – despite looking very simple or even obvious –
has amazing consequences. In particular, it allows us to prove one of my favourite theorems, called
Sharkovsky’s Theorem. Sharkovsky’s Theorem gives us very valuable information about the periodic
points of continuous functions on the real line. In particular, we will show that period 3 implies chaos!

Prerequisites: None.
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Functions of a Complex Variable. (Mark)

Spectacular (and unexpected) things happen in calculus when you allow the variable (now to be called
z = x+ iy instead of x) to take on complex values. For example, functions that are “differentiable” in
a region of the complex plane now automatically have power series expansions. If you know what the
values of such a function are everywhere along a closed curve, then you can deduce its value anywhere
inside the curve! Not only is this quite beautiful math, it also has important applications, both inside
and outside math. For example, functions of a complex variable were used by Dirichlet to prove his
famous theorem about primes in arithmetic progressions, which states that if a and b are positive
integers with gcd(a, b) = 1, then the sequence a, a + b, a + 2b, a + 3b, . . . contains infinitely many
primes. This was probably the first major result in analytic number theory, the branch of number
theory that uses complex analysis as a fundamental tool and that includes such key questions as the
Riemann Hypothesis. Meanwhile, in an entirely different direction, complex variables can also be used
to solve applied problems involving heat conduction, electrostatic potential, and fluid flow. Dirichlet’s
theorem is certainly beyond the scope of this class and heat conduction probably is too, but we should
see a proof of the so-called “Fundamental Theorem of Algebra”, which states that any nonconstant
polynomial (with real or even complex coefficients) has a root in the complex numbers. We should
also see how to compute some impossible-looking improper integrals by leaving the real axis that we’re
supposed to integrate over and venturing boldly forth into the complex plane! This class runs for two
weeks, but it should be worth it. (If you can take only the first week, you’ll still get to see a good bit
of interesting material, including one or two of the things mentioned above.)

Prerequisites: Multivariable calculus (including Green’s Theorem; if the Multivariable Crash Course
doesn’t get to Green’s Theorem, it will be covered near the beginning of this class).

Galois Theory Crash Course. (Mark)

In 1832, the twenty-year-old mathematician and radical (in the political sense) Galois died tragically,
as the result of a wound he sustained in a duel. The night before Galois was shot, he hurriedly scribbled
a letter to a friend, sketching out mathematical ideas that he correctly suspected he might not live to
work out more carefully.

Among Galois’ ideas (accounts differ as to just which of them were actually in that famous letter)
are those that led to what is now called Galois theory, a deep connection between field extensions
on the one hand and groups of automorphisms on the other (even though what we now consider the
general definitions of “group” and “field” were not given until fifty years or so later). If this class
happens, I expect to be rather hurriedly (but not tragically) scribbling as we try to cover as much of
this material as reasonably possible. If all goes well, we just might be able to get through an outline
of the proof that it is impossible to solve general polynomial equations by radicals once the degree of
the polynomial is greater than 4. (This depends on the simplicity of the alternating group, which we
won’t have time to show in this class but which may be shown in a separate week 5 class.) Even if we
don’t get this far, the so-called Galois correspondence (which we should be able to get to, and prove)
is well worth seeing!

Prerequisites: Group theory; linear algebra; some familiarity with fields and with polynomial rings.
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Generating Functions and Regular Expressions. (Linus)

To cheat at Mathcamp’s famed week 4 puzzle hunt, I use regular expressions. For example, if I know
a puzzle answer uses the letters d, u, c, and k in that order, I can use the regular expression d.*u.*c.*k
to get a list of all English words it could be.

To count anything, e.g. the number of domino tilings of a 4×n rectangle, I use generating functions,
a magic tool of combinatorics.

Learn how regular expressions and generating functions are the same thing, and use them together
to instantly solve a bunch of problems like: - ”What’s the most chicken nuggets I can’t order if they
come in 5-piece and 8-piece boxes?” - ”Why do rational numbers have repeating decimals?”

Prerequisites: None! There’s no need to have even heard of a regular expression, generating function,
or dduckkkkk before.

Geometry in Motion. (Zach Abel)

Come see how geometry folds and flexes like paper, de- and re-configures itself like transformers, and
swings and hinges like a Strandbeest2. We’ll look at some of my favorite geometric topics that involve
some form of motion, and we’ll frequently detour to look at recently solved or unsolved research
questions in these areas (including some from my own research). Topics will include, but will not be
limited to:

• Flexible polyhedra and polyhedral flattening: Imagine a polyhedron made with rigid
metal faces that is only allowed to fold along the edges. Can such a shape be flexible? (Yes! )
Can one of these be designed that can be folded flat, say for easy transport or storage? (No! )
What if we allow folds anywhere, not just at the edges?
• Polygon dissection: If I give you an equilateral triangle and some scissors, can you cut it

into a few polygonal puzzle pieces that can be rearranged into a square? (Yes! ) (Try it! Try
using just 4 pieces! ) Is the same true in 3D for, say, a tetrahedron and a cube? (No! ) What
if the pieces are required to be hinged to each other as they reconfigure?
• Mechanical linkages: Picture a movable mechanical device made with rigid metal rods

connected at rotatable hinges. If we affix a pen to one of the bars, what shapes can such a
mechanism trace? A circle is easy with just one segment acting as a compass, but is a straight
line segment possible? (Yes! ) If we make the mechanism complicated enough, can we make a
sketch of your face? (Yes! ) What if edges are forbidden from crossing each other during the
motion?

Prerequisites: None.

Godel’s Incompleteness Theorem. (Steve)

In 1931, Kurt Godel proved that there are true sentences of arithmetic which cannot be proven from
the standard axioms for arithmetic; moreover, he proved that no reasonable system of axioms would
be free from this problem! This is totally wild: what exactly does it mean, and how on earth would
one go about demonstrating it?

2If you don’t know what this is, do yourself a favor: https://www.youtube.com/watch?v=LewVEF2B_pM

https://www.youtube.com/watch?v=LewVEF2B_pM
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In this class we’ll prove Godel’s Incompleteness Theorem, and talk about what it does - and does
not - mean. Historically, this was almost the beginning of modern logic, so there’s also some great
stories from the time during which it was proved and we might talk about those too.

Prerequisites: Comfort with formal proof, especially induction, and a little group, ring, or field theory.

Group Theory. (Mark)

How can you describe the symmetries of geometric figures, or the workings of a Rubik’s cube? How do
physicists predict the existence of certain elementary particles before setting up expensive experiments
to test those predictions? Why can’t fifth-degree polynomial equations, such as x5−3x+2017 = 0, be
solved using anything like the quadratic formula, although fourth-degree equations can? The answers
to these questions are mostly beyond the actual scope of this class, but they all depend on group theory.
Knowing some group theory is at least helpful, and often crucial, in other parts of mathematics. So
come get your feet wet (we’ll consider taking off socks and shoes, but you shouldn’t take any of
that too literally.) We’ll move fairly quickly and with luck, after doing fundamental concepts (and
examples), we’ll get to permutation groups, Lagrange’s theorem, quotient groups, and maybe the First
Isomorphism Theorem.

Prerequisites: None beyond the Mathcamp Crash Course.

How Not To Prove That a Group Isn’t Sofic. (Viv)

Cayley’s Theorem tells us that finite groups are all subgroups of finite permutation groups. A sofic
group is a possibly-infinite group that we sort of maybe want to have the same property roughly
speaking. The group can’t always be a subgroup of a finite permutation group, so instead we just
require that all finite subsets of our sofic group act kind of like finite subsets of permutation groups.
This ends up being a super-useful definition, but we’re left with a burning question: do non-sofic
groups exist? We don’t actually know the answer to this one. We’ll spend the class talking about a
hopeful candidate for a non-sofic group and one great way not to prove that it isn’t sofic.

Prerequisites: Group Theory.

How Not to Solve Tricky Integrals. (Steve)

The function e−x
2

doesn’t have an elementary antiderivative, but the definite (“Gaussian”) integral∫ ∞
−∞

e−x
2
dx

can be solved in a variety of ways. One quite nice approach (due to Poisson) is via change of co-
ordinates. It’s a very easy trick, and it’s natural to ask what other problems we could solve this
way.

It turns out the answer is — absolutely none! In a precise sense, Poisson’s trick only works once.
Useful knowledge is overrated! Come see how to solve the Gaussian integral, and how not to solve
tricky integrals in general!

If we have time, we’ll see a broad generalization of Poisson’s trick. This still doesn’t work anywhere
else, but it’s really fancy.

Prerequisites: Multivariable calculus (specifically, change of variable in multiple integrals).
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How to Build a Calculator. (Lotta)

I have a little box with buttons on it that’s probably made of magic. When I push buttons like ‘2,’
‘3,’ ‘4,’ ‘+,’ ‘3,’ ‘4,’ it returns ‘268.’ How does it know? Probably there is a little person inside doing
arithmetic by hand.

In this class, we will talk about circuits and gates and how you can put gates together to build an
adder or anything you want.

Prerequisites: None.

How to Count Using Topology. (Anand Deopurkar)

Take an analog clock, stop it, and switch the minute hand and the hour hand. Most of the time, you
will end up with an absurd configuration of hands that never arises naturally. But are there valid clock
positions that remain valid after making such a switch? If there are, how many are there? We will
answer this combinatorial question by converting it first into geometry and then into algebra, using
an amazing gadget called the (co)homology ring. If time permits, we will count other things using
this technique.

Prerequisites: None.

How to Define the Square Root. (Apurva)

If a function on real numbers f : R→ R is not injective it is usually not possible to define an inverse,
no matter how well behaved the function is. On the other hand, if a complex differentiable function on
complex numbers f : C→ C is not injective in many cases it is possible to define an inverse function
by creating a new Riemann surface by gluing pieces of the complex plane together.

In this course we’ll learn how to do this and in the process see how Riemann surfaces naturally
come up and learn about their ramified coverings.

Prerequisites: complex variables you should be comfortable with what a complex differentiable function
is.

How to “Divide”. (Don)

Adding two sets together is pretty easy - we just take their union, with an extra copy of anything they
share.

If A+B is the same size as A+C, and A is finite, it’s possible, but not obvious, to show that B is
the same size as C — that is, to subtract!

Multiplying two sets is also pretty easy - we take their cartesian product.
But, how do we divide? It turns out, entirely without a need for the axiom of choice, as long as

we’re clever enough. Instead, we get by with one secret ingredient - love 3.

Prerequisites: None.

3Where by love, I may or may not mean topological cobordism theory



MC2017 ◦ Classes 18

How To Get Rich Quick By Playing The Lottery. (Aaron)

In 2004, Massachusetts wanted to make more money from the state lottery, so they devised a new
game called cash winfall. In this game, instead of having only one large prize, there were many
smaller prizes. When more people bought lottery tickets, the big prize ”rolled down” into the smaller
prizes, making these smaller prizes more valuable. In fact, so much money rolled down that on certain
days, it was possible to buy lottery tickets for 2withanexpectedreturnof5. We’ll tell the story of how
three groups of people exploited this lottery, and explain the math behind it, including a surprising
appearance of the Fano plane.

Prerequisites: None.

How to Pronounce “Lucas”. (Misha)

The French mathematician Édouard Lucas is kind of awesome. In between studying Fibonacci num-
bers, finding patterns in Pascal’s triangle, and inventing an algorithm to look for Mersenne primes
and perfect numbers, he invented the paper-and-pencil game Dots and Boxes, as well as the Tower of
Hanoi puzzle (which he marketed under an anagram name, like Voltaire or Voldemort: N. Claus de
Siam).

He’s also probably tied with Euler for being the mathematician with the most mispronounced name.
To pronounce his last name, say “Lu” to rhyme with “flew” and “cas” as though you’re saying “car”
in an exaggerated British accent.

This class will be an overview of many of the cool things Lucas did. Each day will be a separate,
mostly independent topic in combinatorics, number theory, or the gray area in between.

Prerequisites: None.

Hyperplane Arrangements. (Kevin)

Suppose I want to cut a watermelon into pieces. With 0 cuts, I can make 1 piece: the entire watermelon.
With 1 straight cut, I can make 2 pieces. With 2 cuts, I can make 4, and with 3 cuts, I can make 8.

I’m sure you see the pattern by now: with k cuts, we can make 1
6(k3 + 5k + 6) pieces. These

cuts are an example of a hyperplane arrangement, which is simply a collection of k hyperplanes in
n-dimensional space. We’ll learn some powerful techniques for counting the number of regions that
a hyperplane arrangement determines, and we’ll maybe even see some connections to graph theory.
Throughout, partially ordered sets will abound!

Prerequisites: None.

Hyperreal Numbers. (Don & Tim)

In the beginning, there were integers, Z, and they were good. We could add and subtract and multiply
them, and for a time, that was enough.

Then, came the rational numbers, Q, and the big spaces between the integers were filled in, and
it was good. Now we could also divide by numbers other than zero, and between any two numbers,
there were infinitely more. And for a time, that was enough.

Then, came the real numbers, R, and even the tiniest spaces between the rational numbers were
filled in, and it was good. Now, finally, our number line was complete, and for a time, that was enough.
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And then, came the hyperreal numbers, ∗R, AND THEY WERE TOTALLY BANANAPANTS.
Numbers got shoved in between real number where they had no business going, numbers started
getting unboundedly infinite, and the number line basically exploded. And finally, we said, “enough
is enough.”

In this class, we’ll learn about the crazy explosion of numbers known as “The Hyperreals.” We’ll
learn how to build them, what their properties are, what they look like, and even what they can tell
us about math that isn’t totally bananpants.

Prerequisites: None.

I click “Random Page” in OpenProblemGarden.org until we get one we understand:
then we spend 50 minutes trying to solve it. (Linus)

See title.

Prerequisites: Probably combinatorics.

Impossible Cohomology. (Don)

Cohomology is a powerful tool, used to describe underlying properties of mathematical objects from
topological spaces to groups and rings. It ultimately measures how a big thing is more complicated
than the sum of its parts.

You may recognize this figure:

Each of the parts seems like a normal geometric object, but the way they fit together is wrong.
With the power of cohomology, we’ll figure out exactly how wrong!

Prerequisites: None.

Intersecting polynomials. (Tim!)

You might think that everything there is to know about one-variable real polynomials has been known
for hundreds of years. Except, in 2009, while bored at a faculty meeting, Kontsevich scribbled down
a brand new fact about polynomials. You’ll discover it.

Prerequisites: None.
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Intro to Graph Theory. (Marisa)

There is a theorem that says that for any map of, say, countries on your favorite continent, you can
color the countries so that any two countries that share a border (not just meet at a point, but actually
share some boundary) get different colors, and that the number of colors you will need is no more
than 4. (Try inventing a complicated political landscape and coloring: no matter how crazy the scene,
you’ll always be able to color the map with four colors.)

Mathematicians have been pretty convinced about the truth of this Four Color Theorem since the
late 1800s, but despite many false starts, no one gave a proof until 1976, when two mathematicians
wrote a very good computer program to check 1,936 cases. (To this day, we have no human-checkable
proof.)

In this class, we will definitely not prove the Four Color Theorem. You will, however, prove the Five
Color Theorem, which is a whole lot shorter (and which was successfully proven by hand in 1890).
Along the way, you’ll meet many other cool concepts in Graph Theory.

Notice how I said “you will prove”? That’s because the course will be inquiry-based: I won’t be
lecturing at all. You’ll be working in small groups to discover and prove all of the results yourself!

Prerequisites: None!

Laws of large numbers. (Lara)

In this class, for X1, . . . , Xn independent and identically distributed random variables, we’ll prove the
convergence of expressions like X1+···+Xn

n in different senses. We’ll use these results to answer a few
real-world problems such as: 1. How long do we expect it to take us to collect an entire set of stamps
if we acquire one stamp at random per time interval? 2. How much should we pay to play a game
where we win 2j dollars if we get j − 1 consecutive tails and it takes 2j coin tosses to get heads for
the first time?

Prerequisites: You should know what a random variable is, what it means to integrate a random
variable and what it means for random variables to be independent.

Linear Algebra. (Don)

Linear algebra is the area of math that deals with vectors and matrices. It is one of the most useful
methods in mathematics, both within pure math and in its applications to the real world. One could
argue that most of what mathematicians (and physicists, and engineers, and economists) do with their
time is try to reduce hopelessly complicated non-linear problems to linear ones that can actually be
solved. Thus for many applied fields, the most important math to know is not calculus, but linear
algebra. Obviously we can’t cover all of linear algebra in one week, but this class will give you a basic
background, as well as a preview of some of the most important results.

We’re going to start out on the plane, where linear algebra springs out of geometry. We’ll define
linear maps and give an intuitive preview of the central themes of linear algebra. Then we’ll leave
our two-dimensional pictures behind and introduce the more general concepts of vector spaces, linear
independence, dimension, kernels, images, eigenvectors, eigenvalues, and diagonalization. (If you don’t
know what any of these words mean, that’s great: come to the class! If you know all of them, then
you probably don’t need this class.)

Prerequisites: None.
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Logic Puzzles. (Don)

In a world where all people are either liars or truthtellers, suppose Armond says, “Burt is a liar,” and
Burt says, “Armond and Charlie are the same type of person.” What can you tell me about Charlie?

A group of 4 campers and 4 staff need to cross a river, via a boat that can take 1 or 2 people. If the
campers ever outnumber staff at a location, those staff will get covered in magic marker. Can they all
make it across the river without anyone getting drawn on?

The ““Schedule” Making “Committee”” decides to meet at a particular day during the first four
weeks of camp; it’s Wednesday, Thursday, or Sunday of Week 1, Friday or Saturday of Week 2,
Tuesday or Thursday of Week 3, or Tuesday, Wednesday, or Friday of Week 4. Two “members” of the
“committee,” identified as M and N, remember this list of dates. Further, M knows the week for the
meeting, and N knows the day of the week for the meeting. They then make the following statements:

• M: “I know that N doesn’t know the date.”
• N: “I didn’t know it before, but now I do.”
• M: ”Now I too know the date.”

When is the “meeting”?

In this class, we’ll look at puzzles like these, figure out how to solve them, and then go even further,
studying the underlying logic behind the puzzles, and ultimately figuring out how to write them.

Prerequisites: None.

Machine Learning (NO neural networks). (Linus)

Emphasis on theory over practice. Possible topics:
- Learning a linear classifier (with noise) - Models of learning: PAC, Mistake Bound, Bayesian -

VC dimension (a combinatorial property: “simple”, ”easy to learn” concepts tend to have low VC
dimension)

Prerequisites: Thinking in n-dimensional space.

Many Clubs Share People. (Aaron)

I’ll explain and discuss the classic problems of oddtown and even town. In oddtown, there are n
people. These people form clubs where each club has an odd number of members, and for any pair of
clubs, the number of people they have in common is n. How many clubs can there be? In eventown,
there are n people. These people form distinct clubs where each club has an even number of members,
and any pair of clubs share an even number of members. How many clubs can there be? The answers
to these two questions are surprisingly different, but both involve linear algebra over the finite field
with two elements.

Prerequisites: Linear Algebra.
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Math and Brains. (Nora Youngs)

The brain is an incredibly complex organ, and even with impressive advances in neuroscience there
are still many mysteries remaining around how it functions. In this class, we’ll take a look at some
of the mathematical models which have been used to understand how neurons work, and how they
interact in both small and large networks. We’ll also try to see how these models answer questions
like: What is a memory? and: How does learning happen? Phrased another way, in this class we will
think about what might be the best mathematical way to think about thinking.

Prerequisites: The willingness to suspend reality in order to construct a feasible mode.

Mathcamp Crash Course. (Tim!)

This course covers fundamental mathematical concepts and tools that all other Mathcamp courses
assume you already know: basic logic, basic set theory, notation, some proof techniques, how to define
and write carefully and rigorously, and a few other tidbits. If you are new to advanced mathematics
or just want to make sure that you have a firm foundation for the rest of your Mathcamp courses,
then this course is highly recommended.

Here are some problems to test your knowledge:

(1) Negate the following sentence without using any negative words (“no”, “not”, etc.): “If a book
in my library has a page with fewer than 30 words, then every word on that page starts with a
vowel.”

(2) Given two sets of real numbers A and B, we say that A dominates B when for every a ∈ A
there exists b ∈ B such that a < b. Find two, disjoint, non-empty sets A and B such that A
dominates B and B dominates A.

(3) Prove that there are infinitely many prime numbers.
(4) Let f : A → B and g : B → C be maps of sets. Prove that if g ◦ f is injective then f is

injective. (This may be obvious, but do you know how to write down the proof concisely and
rigorously?)

(5) Define rigorously what it means for a function to be increasing.
(6) Prove that addition modulo 2017 is well-defined.
(7) What is wrong with the following argument (aside from the fact that the claim is false)?

Claim: On a certain island, there are n ≥ 2 cities, some of which are connected by roads.
If each city is connected by a road to at least one other city, then you can travel from any
city to any other city along the roads.
Proof: We proceed by induction on n. The claim is clearly true for n = 1. Now suppose
the claim is true for an island with n = k cities. To prove that it’s also true for n = k+ 1,
we add another city to this island. This new city is connected by a road to at least one of
the old cities, from which you can get to any other old city by the inductive hypothesis.
Thus you can travel from the new city to any other city, as well as between any two of
the old cities. This proves that the claim holds for n = k+ 1, so by induction it holds for
all n. QED.

(8) Explain what it means to say that the real numbers are uncountable. Then prove it.

If you are not 100% comfortable with most of these questions, then you can probably benefit from
this crash course. If you found this list of questions intimidating, then you should definitely take this
class. It will make the rest of your Mathcamp experience much more enjoyable and productive. And
the class itself will be fun too!

Prerequisites: None.



MC2017 ◦ Classes 23

Mathematica Workshop. (Beatriz)

Mathematica software is a very useful tool that allows us to efficiently solve symbolic and algebraic
problems. We’ll learn how to perform several different computations, plot graphs, and create dynamic
visualization using Mathematica.

Prerequisites: None.

Mathematics in Crisis: The St. Petersburg Paradox. (Sam)

By the early 18th century, probability was starting to develop as a field of its own right. Core to
this development was the concept of Expectation (Expected Value). The hope was that expectation
would become the tool for making rational decisions: the decisions a mathematician would make. In
1713, however, Nicolas Bernoulli came along and proposed what is now known as the St. Petersburg
paradox: a game that no mathematician would pay even $100 to play, but for which mathematics
dictated that anyone should jump at the chance to pay any amount of money to play. Many of the
initial resolutions to this paradox (posed by serious mathematicians) might seem crazy today. For
example, an event having different mathematical and moral probabilities.

In this class, we’ll briefly trace out the early history of probability, leading up to the crisis that
was the St. Petersburg Paradox. We’ll then spend the rest of the class talking about the historical
resolutions proposed.

Prerequisites: You should know what expected value is.

Math Writing Workshop. (Beatriz)

This class is suitable for all levels. What you learn from this class with be tailored to your needs.
Whether you need help with the general basics of mathematical writing or writing your Mathcamp
project, you will benefit from this class.

Writing a solution to a problem set is very different from writing a report or an article to be published
in a journal or a blog. Good writing is an essential part of mathematics that is very often overlooked
and very difficult to master. We will talk about what constitutes good mathematical writing and do
some hands-on activities. The goal of this class is to help improve your ability to write rigorous and
elegant proofs. The emphasis will be not on how to figure out the answer but on how to turn your
solution into a rigorous argument that is clear, concise, and effective.

Prerequisites: None.

Metric Space of Metric Spaces. (Steve)

A *metric space* is just that - a set of *points* together with a notion of *distance*. We demand that
this distance notion not be too silly (e.g. the distance from a to b should be the same as the distance
from b to a), but otherwise anything goes.

This means we can have very weird metric spaces. Some of these are just oddly shaped; others have
“points” that, strictly speaking, aren’t points. For instance, we can have metric spaces whose points
are *lines* in other, more familiar spaces. And, because metric spaces are fun, we can put metric
spaces in metric spaces - there is a nice metric space whose “points” are themselves metric spaces!

This class will begin by studying metric spaces in general, and some properties and constructions of
metric spaces - compactness, completions, isometries and homeomorphisms, etc. From there we will
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move on to the metric space of metric spaces, and have fun playing around with such a strange object.
Finally, we’ll talk a bit about how this space is used in mathematics - in particular, how it gets used
in *algebra* (because when you have a geometry of geometries, obviously that’s all about algebra).

Time permitting, we’ll look at some other fun metric spaces - for instance, the *pseudoarc*, a “line”
that can’t be cut into two shorter ”lines,” or the Urysohn space, a metric space which is ”as big as
possible” in a precise sense.

Prerequisites: Comfort with proofs.

Multivariable Calculus Crash Course. (Mark)

In real life, interesting quantities usually depend on several variables (such as the coordinates of a
point, the time, the temperature, the number of campers in the room, the real and imaginary parts of
a complex number, . . . ). Because of this, “ordinary” (single-variable) calculus often isn’t enough to
solve practical problems. In this class, we’ll quickly go through the basics of calculus for functions of
several variables. As time permits, we’ll look at some cool applications, such as: If you’re in the desert
and you want to cool off as quickly as possible, how do you decide what direction to go in? What is
the total area under a bell curve? What force fields are consistent with conservation of energy?

Prerequisites: Knowledge of single-variable calculus (differentiation and integration).

My Favorite Magic Trick. (Don)

I’ve always liked magic, especially mathematical magic — a good mathematical magic trick is essen-
tially a live-action puzzle, with particularly good flavortext. There are a number of tricks that I hold
dear to my heart, but this class is about my favorite one: the one where you do all the work. Come
perform this trick, and then figure out how it works!

Prerequisites: None.

Non-Classical Logic. (Joshua, camper teaching project)

Mathematics has this long-standing tradition of creating new systems. When the reals weren’t enough,
we invented the complex numbers. When geometry was too strict, we invented topology. But what
happens if we want to change the very laws of logic? In this class, we’ll do just that.

For the most part, we’ll stick to a type of logics called modal logics. These logics can help us make
sense of statements like “Misha must be the crowman,” among other statements. We might also touch
on other interesting types of logics near the end of class.

Prerequisites: None.

Not Your Grandparents’ Algorithms Class. (Sam)

Have you ever found yourself in a panic, wondering what to do if you ended up as a contestant on the
not-totally-made-up hit game show Wait, wait. Who’d I just marry? This class will study algorithms
for making progressively more and more complicated decisions; by the end of the week, we’ll have just
the right set of ideas to placate any fears about that game show!
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It turns out that, in Wait, wait. Who’d I just marry?, the decisions you make are complicated. You
get new information in various rounds, and the “matchmakers” employed by the show provide less
than truthful insight (to add drama and boost ratings, naturally). These decisions are tedious, so we’ll
start by figuring out how to solve optimization problems that are about as mathematically nice as
possible: linear programs. To solve linear programs we’ll take an atypical path and study the ellipsoid
algorithm: an algorithm with beautiful geometric intuition that’s important theoretically, and kind-of
sort-of useful practically! Unlike a traditional algorithms class, we’ll spend approximately zero time
focusing on running time beyond vague notions about whether or not an algorithm is efficient in a
formal sense. Instead, we’ll emphasize the ideas behind a whole bunch of cool algorithms!

Prerequisites: Basic comfort with working in Rn, including set notation. We may briefly use modular
arithmetic on day 5.

Penrose Tilings. (Steve)

It’s easy to tile the plane with squares; it’s also pretty boring. More complicated tiles lead to more
interesting tilings — tiling with hexagons is pretty neat — but of particular interest are those tilings
where every part looks unique: although they tile the plane with few shapes, the resulting tiling has
few or no symmetries at all. It is not obvious that (interesting) tilings of this type exist, but they do.
One particularly famous one is the Penrose tiling, which is a tiling (or rather, class of tilings) with
very little actual symmetry but lots of tantalizing structure; if you haven’t seen this before, it’s worth
googling (it’s really quite pretty). We’ll look at a couple simple examples of “symmetry-less” tilings,
and then dive into a mathematical explanation of the Penrose tilings and their various interpretations.
Come for the tilings, stay for the projections of five-dimensional cubes!

Prerequisites: None.

Permutation Statistics. (Kevin)

Here’s a classic conundrum. The first passenger to board a full flight can’t remember what seat to
sit in and picks a random seat. Every passenger thereafter sits in the correct seat if available, or a
random seat otherwise. You’re the last passenger to board. What’s the probability you end up in the
correct seat?

Here’s a more difficult one. Suppose you and 99 of your best “friends” are incarcerated by Don for
being too janky, and Don offers to release you if you meet the following challenge. Don secretly places
each of your names in 100 different boxes then lays the boxes out in a row in his office. One by one,
you and your 99 friends can enter Don’s office and peek inside 50 boxes, but you can’t tell your friends
what you see. If you and all 99 of your friends each manage to find your own name, you’ll be released!

Everyone individually has a 1/2 chance of succeeding; if you pick randomly and independently, then
there’s a vanishingly small chance that you all win the game. But you can decide a strategy ahead of
time so that you actually have a decent shot of being released!

In this class, we’ll use generating functions to study permutation statistics, things like average
number of cycles in a permutation, chances of two numbers being in the same cycle, and maybe some
more exotic properties of permutations as well, and we’ll see how they answer these questions.

Prerequisites: Generating functions are useful to have seen, but I can help catch you up if necessary.
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Planar Algebras. (Noah Snyder)

We write mathematics, like we write words, on a line. This means you can multiply on the left or
on the right, but not on top or bottom. In planar algebra, you can use the whole page to write your
expressions multiplying in any direction you like. Planar algebras play important roles in operator
algebras, knot theory, and quantum groups. One nice thing about planar algebra is it’s a place where
very some recent research is accessible without a lot of background, in particular most of the material
in this class will be taken from papers published in the past 35 years, some as recent as last year!

Prerequisites: Linear Algebra (vector spaces, bases, and dimension).

Prime Numbers. (Lara)

How far out do we have to go to ensure we’ve found the nth prime? What can we say about the gaps
between consecutive primes? What happens if we sum the reciprocals of all the primes?

In this class we’ll try to gain insight into these questions and into the mysterious prime counting
function π(x). Starting right at the beginning with Euclid’s proof that there are infinitely many primes,
we’ll use the technique in this proof to find an upper bound for the nth prime that will shed some
initial light on the behaviour of π(x). We’ll then develop more machinery that will give us sharper
bounds on π(x) and see the connections it has with sums like

∑
p≤n log p. Finally we’ll come full circle

and give another proof there are infinitely many primes, this time with a better understanding of what
’infinitely many’ means here.

Prerequisites: Some understanding about how to play with integrals and series.

Problem Solving: Convexity. (Misha)

You see lots and lots of olympiad problems about inequalities. These are often solved by applying
obscure theorems due to Scottish mathematicians.

In the real world, mathematicians study inequalities too, but their approach is different. Inequalities
that arise from convex functions are much more important.

So in this class, we will take the best of both worlds and use convexity to solve olympiad math
problems.

Prerequisites: None.

Problem Solving: Diophantine Equations. (Misha)

This is a class about solving equations which end words such as “where x, y, and z are integers”. Some-
times this involves reasonable techniques like “consider the prime factors of both sides”. Sometimes
this involves bizarre techniques like “take the equation modulo 19”.

We’ll solve problems in class together, and then I’ll leave you more problems to solve for homework,
and hopefully you will end up walking away with an answer to the question “How do you know to use
19?”

Prerequisites: You should be comfortable with modular arithmetic.
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Problem Solving Discussion. (Misha)

So how do you actually solve olympiad problems?
This is day 2 of a class in which we’ll pick apart a competition problem, discuss different solutions

to it, and try to answer one question: how would you come up with those solutions?
You don’t need to have been to day 1 of this class (which happened in Week 1), or to remember

what happened if you were there. You do need to think about the following math problem, which
comes from the 2012 IMO:

Let k and n be fixed positive integers. In the liar’s guessing game, Amy chooses nonnegative integers
x and N with 0 ≤ x ≤ N . She tells Ben what N is, but not what x is. Ben may then repeatedly ask
Amy whether x ∈ Sfor arbitrary sets S of integers. Amy will always answer with yes or no, but she
might lie. The only restriction is that she can lie at most k times in a row. After he has asked as
many questions as he wants, Ben must specify a set of at most n positive integers. If x is in this set
he wins; otherwise, he loses.

Prove that:

(a) If n ≥ 2k then Ben can always win.
(b) For sufficiently large k there exist n ≥ 1.99k such that Ben cannot guarantee a win.

Prerequisites: Think about the problem in this blurb. (This is also what I mean by the required
homework: this is a one-day class, so the required homework must be done by the time you get to
class.).

Problem Solving Discussion. (Misha)

So how do you actually solve olympiad problems?
This is the first day of a discussion class that will be held on several days of camp. We’ll pick apart

a competition problem, discuss different solutions to it, and try to answer one question: how would
you come up with those solutions?

This Saturday, we’ll meet to discuss a problem many of you have seen already: problem 6 from this
year’s Qualifying Quiz.

(See http://www.mathcamp.org/quiz for the text of the problem if you haven’t seen it.)

Prerequisites: Think a little bit about the problem we’re going to discuss.

Problem Solving: Geometric Transformations. (Misha)

In this class, we will learn how to use geometric transformations to solve math competition problems.
The following topics will be covered:

(1) Translation and central symmetry (Tuesday)
(2) Rotation and reflection (Wednesday)
(3) Similarity and spiral similarity (Thursday)
(4) Inversion (Friday)

In class, we will learn about how to use these transformations, and how to spot when they can be
used, by solving problems together. There will be problems left to solve on your own. You won’t need
to solve these to keep up with the class, but you should, because solving problems on your own is
critical to learning problem-solving.

Prerequisites: The equivalent of a high school geometry class.

http://www.mathcamp.org/quiz
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Problem Solving: Linear Algebra. (Misha)

Most high school math contests (the IMO included) do not use any topic considered to be too advanced
for high school, such as linear algebra. This is a shame, because there have been many beautiful
problems about linear algebra in undergraduate contests such as the Putnam Math Competition.

In this class, we will look at linear algebra from a new perspective and use it to solve olympiad
problems.

Prerequisites: Linear algebra. In particular, you should know what eigenvalues are.

Problem Solving: Probabilistic Method. (Tim!)

“When you have eliminated all which is impossible, then whatever remains, however improbable, must
be the truth.” — Sherlock Holmes. This is a good way to way to solve crimes, and a good way to solve
math problems. If you need to prove that some Mathcamp staff is a spy, calculate the probability that
a randomly-chosen staff is a spy. If the probability is greater than 0, then you can safely conclude
that a traitor walks among us (even though you might not know who it is).

Perhaps the most surprising thing about this method is that it is actually useful! In fact, the
principle above is all you need to solve this problem:

• Prove that there exists a graph with 1,000,000 vertices such that every set of 40 vertices has a
pair of adjacent vertices and a pair of nonadjacent vertices.

One might be worried that a probability-based proof to this problem might not be air-tight because
it leaves things to chance, but fear not — even though the proof uses probability, the final result is
true with absolute certainty.

In addition to this strategy, we’ll see more probability-based approaches to solving problems (even
problems whose statements often don’t reference probability at all!). Part of the class time will consist
of campers working on problems in groups and presenting solutions.

Prerequisites: None.

Problem Solving: the “Just Do It” method. (Linus)

Example Problem: Is there a sequence of integers a1, a2, a3, ... which contains every integer exactly
once, where the sequence of differences ai − a(i+ 1) also contains every integer exactly once?

The ”Just Do It” method turns some frightening-looking combinatorics problems, like this one, into
jokes.

[If this is a two-day class, the second day will be 3 chilis and focus on harder variants, such as
transfinite Just Do It.]

Prerequisites: None.
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Pseudo-Telepathy via Representation Theory of Finite Groups. (Jalex)

Your friends Alice and Bob are experimental quantum physicists. They claim that they have estab-
lished high-fidelty quantum entanglement between their labs. This is a valuable resource: it can be
used for things like teleporting quantum states and secure distribution of cryptographic keys. You’d
like to verify or falsify their claim. If you were an experimentalist, this would be straightforward:
you could just take the particles into your lab and do some experiments—these would be only as
complicated as the ones Alice and Bob have already done.

However, you’re a mathematician; you’d prefer not to get your hands dirty. Instead, you’ll call
them up on the telephone to ask them some questions about systems of linear equations over finite
fields. If they answer all of your questions correctly, you can be pretty sure that their claim is correct.
How is this possible? Answering this question will lead us to talk about the foundations of quantum
mechanics, a planar algebra for equations in finitely generated groups, and the representation theory
of the extraspecial groups of order p5.

(Based on joint work with Andrea Coladangelo. If we have time at the end of the class, we’ll discuss
some low-hanging open questions!)

Prerequisites: Linear Algebra (be able to prove that a vector space is classified up to isomorphism by
its dimension) Group Theory (be able to define specific groups using generators and relations).

Quadratic Field Extensions. (Lara)

In this class we’ll figure out why fields of the form Q
√
d are important and what we can say about

them. We’ll see what it means to be an integer in such a field and work with rings of such integers.
We’ll explore primes and unique factorisation, but instead of ring elements, we’ll see that we should-
and will-play with ideals instead. One question we’ll answer is: which integers can be written as the
sum of two squares?

Prerequisites: Ring theory. The material from Susan’s week 2 class is definitely sufficient. Talk to me
if you’re unsure.

Quadratic Reciprocity. (Mark)

Let p and q be distinct primes. What, if anything, is the relation between the answers to the following
two questions?

(1) “Is q a square modulo p?”

(2) “Is p a square modulo q?”

In this class you’ll find out; the relation is an important and surprising result which took Gauss a year
to prove, and for which he eventually gave six different proofs. You’ll get to see one particularly nice
proof, part of which is due to one of Gauss’s best students, Eisenstein. And next time someone asks
you whether 101 is a square modulo 9973, you’ll be able to answer a lot more quickly, whether or not
you use technology!

Prerequisites: Some basic number theory (if you know Fermat’s Little Theorem, you should be OK).
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Quandles. (Susan)

So... you know associativity? That thing that makes the operations in groups and rings at least
reasonably nice? Well I say, phooey to associativity! Who needs it?

In this class we’ll learn about a weird-looking nonassociative algebraic structure called a Quandle.
We’ll talk about how quandles behave, how they misbehave, and how they’re related to knot theory.
If you want just a little bit more brain-bending algebra before the end of camp, then this is the class
for you.

Prerequisites: None.

Queueing Theory. (Misha)

We will look at continuous versions of Markov chains and their applications to queueing theory: the
study of how long you will wait in line.

Prerequisites: None—in particular, my class on Markov chains is not a prerequisite.

Quivers. (Asilata Bapat)

In of algebra and representation theory, directed graphs like to go by the fancy name of quivers. Here
is an example.

• •
Given a quiver, we play the following game: we put a vector space at each vertex, and a corresponding
linear map at each arrow, and then try to classify how many fundamentally different such configurations
we can construct.

This simple idea leads us surprisingly quickly to some classic (solved and unsolved!) problems in
algebra, as well as some topics of current research. In this class we’ll see how to do algebra on quivers,
and explore lots of concrete examples. Along the way we’ll invoke some tools from ring theory, and
get a sneak preview into the world of homological algebra.

Prerequisites: Linear algebra (you should know about kernels and cokernels of linear maps, and direct
sums of vector spaces). Familiarity with rings would be useful but not necessary.
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Ramsey Theory. (Lynn Scow)

If you color each integer between 1 and 100 either red or blue, it may not be surprising that you are
able to find a sequence of the form

a, a+ d, a+ d+ d

where all three of these numbers are red, or all three are blue. Our next question is: did we need
all one hundred numbers for this result? Results like these fall within the realm of Ramsey theory.
In this course we will become familiar with different Ramsey-type problems and the tools with which
to build solutions. We will leave plenty of room to experiment with small examples, and paper and
colored pencils will be provided! Ramsey theory can be thought of as the theory of existence of
patterns/order/regularity in large and complex structures. The cool thing about the theory is that it
doesn’t just say that you that these patterns probably exist, it guarantees that you could find them!
And you are guaranteed to have fun doing so! Actually, that is not guaranteed by the theory, but it
is probably true. Bring your love of counting!

Prerequisites: Addition/multiplication mod n, definitions of vertices and edges from graph theory,
some ideas from counting like binomial .

Real Analysis. (Nic Ford)

If you’ve taken a calculus class that was anything like mine, you probably learned about limits and
continuity in a way that might have seemed a bit unsatisfying. Something like “when x gets really
close to 3, f(x) gets really close to 6” or “f is continuous because when you draw the graph you never
have to lift your pencil off the paper”. Descriptions like this can be a nice way to understand the
general concept that words like “limit” are trying to express, but they’re pretty useless for actually
proving anything. How close is “really close”? When, exactly, does f(x) have to be close to 6? How
would anyone even begin to write a proof that some function is continuous?

In this class, we’ll talk about how to make concepts like these precise, starting with exactly what
we mean when we talk about a real number in the first place. We’ll start going back through the stuff
you learned in calculus class, giving meaning to definitions and proofs to theorems, and when we’re
done you’ll have seen what it really means for a function to be continuous, for a sequence or a series
to converge, or for a limit to exist.

Prerequisites: You should be comfortable with proofs and with the basic language of set theory. In
particular, you should know what it means to prove something by contradiction, to prove a statement
containing the phrase ”if and only if”, and what it means to write something like C = {x : x ∈
A and x /∈ B}. It will also help if you know what it means for a set to be “countable”. Calculus is
not strictly required, but it will be easier to follow if you’ve been exposed to the ideas of limits and
continuity in some form already.

Riemann and Series. (Lara)

The Riemann Hypothesis is one of the biggest open problems there are in mathematics. We’ll begin
this course by understanding what this hypothesis says. However, we’ll have a far less lofty goal than
proving it.
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Instead the goal of this class is to find the values taken by the Riemann Zeta function (the function
on which the hypothesis is based) at positive even integers. We’ll develop the theory of Taylor series,
see some of its applications and the problems it can be used to solve, finishing this section with
understanding Euler’s intuition about what ζ(2) should be. We’ll then get acquainted with Fourier
series and use them to prove that Euler was right and to come up with a recursive formula for ζ(2n).

Prerequisites: A bit of familiarity playing with integrals.

Riemann Surfaces. (Aaron)

Riemann surfaces form a beautiful breeding ground for ideas from many fields of math such as algebraic
geometry, number theory, symplectic geometry, dynamics, and complex analysis. A Riemann surface
is a surface which looks like the complex numbers if you zoom in around any point. For example, the
sphere and the torus are Riemann surfaces. In the first couple days, we will use Riemann surfaces to
give slick proofs of theorems from complex analysis, like Liouville’s theorem and the open mapping
theorem. By the end of the course, we will obtain a bound on the number of maps from any compact
Riemann surface (other than the sphere or a torus) to itself.

Prerequisites: Complex analysis, some familiarity with point-set topology may be helpful but is not
required.

Ring Theory. (Susan)

Ring theory is a beautiful field of mathematics. We cut ourselves loose from our usual number
systems—the complexes, the reals, the rationals, the integers, and just work with . . . stuff. Stuff
that you can add. And multiply. Rings are structures in which addition and multiplication exist and
act as they ”should.” Polynomials, power series, matrices, real-valued functions on a set—wherever
you have some way of defining an addition and a multiplication, you’ve got a ring.

Somehow, in throwing away the numbers that gave us our initial intuition about how addition and
multiplication should work, we are left with a tool that is immensely powerful. Ring theory is the
backbone of fields such as algebraic geometry, representation theory, homological algebra, and Galois
theory.

This class will be a quick introduction to some of the basics of ring theory. We will cover the ring
axioms, homomorphisms of rings, integral domains, and basic commutative localization theory.

Prerequisites: None.

Set Theory. (Steve)

Sets appear everywhere in mathematics — it’s very difficult to do math without sets. What about
studying sets without math?

It turns out that sets are all we need to do math! We start with the emptyset, and build progressively
more complicated sets with some basic operations (taking powersets, taking unions, ...) and a couple
more complicated operations. It turns out that from this modest beginning, we can build all of
mathematics!

Set theory is the study of the ”universe One particularly interesting question, which was asked in
various ways during the early 20th century, is: what sets do we actually need in mathematics? One
way to phrase this is to ask about *parts* of the whole universe V , which aren’t the whole thing but
still have ”enough sets” that they satisfy the ZFC axioms (and maybe more!), and at the same time
are easier to understand than V . This is called inner model theory, and is one of the main research
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areas in modern set theory. The goal of this class is ultimately to do some inner model theory, and
see why it’s super cool.

Still undecided? Inner model theory studies *iterable weasels.* Seriously. Google it. Weasels. Tell
your friends!

Prerequisites: Comfort with proofs.

Shannon Capacity of Graphs. (Yuval)

What do umbrellas have to do with text messages? As it turns out, quite a bit! In this class, we will
use graphs to understand communication, and then use communication to understand graphs. In the
end, we will use umbrellas to understand both communication and graphs.

Prerequisites: Basic graph theory (Marisa’s Week 1 class certainly suffices, but come talk to me if you
haven’t taken it; you might be prepared anyway.).

Simplicity itself: An and the “other” An. (Mark)

The monster group (of order roughly 8 ·1053) gets a lot of “press”, but it’s not the largest finite simple
group; it’s the largest exceptional finite simple group. (Reminder: A simple group is one which has
no normal subgroups other than the two “trivial” ones; by using homomorphisms, all finite groups
can be “built up” from finite simple groups. The complete classification of finite simple groups was a
monumental effort that was completed successfully not far into our new millennium.)

What about the unexceptional finite simple groups? They come in infinite families, and in this class
we’ll look in some detail at two of those families: the alternating groups An and one class of groups
of “Lie type”, related to matrices over finite fields. (If you haven’t seen finite fields, think “integers
mod p” for a prime p.) By the way, the simplicity of the alternating groups plays a crucial role in the
proof that in general, polynomial equations of degree 5 and up cannot be solved by radicals (there is
no “quintic formula”).

We’ll prove that An is indeed simple for n ≥ 5, and we should be able to prove simplicity for the
other class of groups also, at least for 2× 2 matrices.

Prerequisites: Basic group theory and linear algebra; familiarity with finite fields would be helpful,
but not really necessary.

Smol Results on the Mobius Function. (Karen, camper teaching project)

Our goal is to give an overview of classical analytic number theory techniques. In particular, we’ll
discuss the Mobius function in detail. The Mobius function appears in many unexpected places,
such as in connection to the Riemann zeta function and the roots of unity. There are various open
problems about its “randomness.” It is also a useful tool for extracting values from certain types of
summations and for analyzing other arithmetic functions. We will define many fundamental concepts
about multiplicative functions and see how to use them to prove cute (smol) facts such as “the Mobius
function can be expressed as the sum of the primitive roots of unity.”

Prerequisites: None.

Solving cubic and quartic equations without the mess. (Aaron)

Probably you are well acquainted with the quadratic formula. It is similarly possible to solve cubic
and quartic equations in terms of radicals, but unfortunately, these formulas are incredibly messy.
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How might you come up with these formulas yourself? In this class, we’ll explain how to solve cubic
and quartic equations using radicals via pure thought, without any messy equations.

The method I’ll describe is heavily motivated by Galois theory, though you don’t need to know any
Galois theory to appreciate it.

Prerequisites: None.

Special Relativity. (Lotta)

According to xkcd4, Special Relativity is very philosophically exciting and doesn’t require that much
mathematical background.

Special relativity is about things that go really really fast. Almost as fast as the speed of light!
When things go fast, classical physics breaks down and unintuitive things start happening. Things
appear to become shorter and they experience time differently. Even stranger, two people moving at
different speeds relative to each other may disagree on the order that events happened. In this class,
we will work from the two postulates of special relativity and derive all these strange effects.

Prerequisites: None, but being familiar with classical mechanics will help you appreciate the awesome-
ness.

Surreal Numbers. (Jalex)

Typical constructions of the reals go like this:

• Start with 0.
• Put in 1.
• Use addition to get N
• Use subtraction to get Z.
• Put in fractions to get Q.
• Complete the Cauchy sequences to get R.

That’s a big number of steps! In this class, we’ll start from the following definition:

• A Number is an ordered pair (L — R) where L and R are sets of numbers, and no number in
L is bigger than any number in R,

and get not only the reals, but a much richer extension that has a proper subfield of every cardinality.

Prerequisites: None.

Symmetries of Spaces. (Apurva)

This course is about Lie (pronounced Lee) groups in low dimensions. Lie groups (or matrix groups)
are groups which arise as symmetries of Euclidean spaces with extra structures.

In this course we’ll study matrix groups O(2) = isometries of R2, O(3) = isometries of R3,
SL2(R), SL2(C) = symmetries of of C2, O(1, 3) = symmetries of the space-time R1,3, Spin(3) =
symmetries that give rise to electron spin = unit quaternions, etc.

We’ll try to see how these correspond to observables and transformations in physics like spin, time
dilation and space contraction.

4https://xkcd.com/1861/

https://xkcd.com/1861/
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Prerequisites: groups: you should know what a group is and what homomorphisms are.
linear algebra: you should know the definitions/statements of the following terms: linear transforma-
tions, eigenvalues, eigenvectors and the cayley-hamilton theorem.

Systems of Differential Equations. (Mark)

Many models have been devised to try to capture the essential features of phenomena in economics,
ecology, and other fields using systems of differential equations. One classic example is given by the
Volterra-Lotka equations from the 1920s:

dx

dt
= −k1 x+ k2 xy ;

dy

dt
= k3 y − k4 xy ,

in which x, y are the sizes of a predator and a prey population, respectively, at time t, and k1 through
k4 are constants. There are two obvious problems with such models. Often the equations are too
hard to solve (except, perhaps, numerically); more importantly, they are not actually correct (they
can only hope to approximate what really goes on). On the other hand, if we’re approximating

anyway and we have a system
dx

dt
= f(x, y) ;

dy

dt
= g(x, y), why not approximate it by a linear system

such as
dx

dt
= px + qy ;

dy

dt
= rx + sy ? Systems of that form can be solved using eigenvalues and

eigenvectors, and usually (but not always) the general behavior of the solutions is a good indication
of what actually happens for the original (nonlinear) system if you look near the right point(s). If this
sounds interesting, come find out about concepts like trajectories, stationary points, nodes, saddle
points, spiral points, and maybe Lyapunov functions. Expect plenty of pictures, and probably an
opportunity for some computer exploration using Mathematica or equivalent. (If you don’t want to
get involved with computers, that’s OK too; most homework will be doable by hand.)

Prerequisites: Linear algebra (eigenvectors and eigenvalues), calculus, a little bit of multivariable cal-
culus (equation of tangent plane).

The Baire Category Theorem. (Lara)

In this class we’ll prove the Baire category theorem, which tells us that a countable intersection of
dense open sets is dense and explore some of its amazing consequences. Examples of these are: 1. Not
only are the irrationals uncountable, but they can’t even be written as the countable union of closed
sets. 2. There exists functions continuous at all the rationals but discontinuous at all the irrationals,
but not vice versa. 3. Any infinitely differentiable function on [0, 1] that has some derivative vanish
at each point of the interval must be a polynomial.

Prerequisites: You should know what a metric space is and be comfortable with the idea of open sets
and closed sets and what the interior and closure of sets are.
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The Bell Curve. (Mira)

I know of scarcely anything so apt to impress the imagination as the wonderful form of cosmic

order expressed by the “Law of Frequency of Error.” The law would have been personified

by the Greeks and deified, if they had known of it. It reigns with serenity and in complete

self-effacement amidst the wildest confusion. The huger the mob, and the greater the

apparent anarchy, the more perfect is its sway. It is the supreme law of Unreason.

Sir Francis Galton, 1889

Human heights; SAT scores; errors in scientific measurements; the number of heads you get when
you toss a million coins; the number of people per year who forget to write the address on a letter
they mail. . . . what do all of these (and numerous other phenomena) have in common?

Empirically, all of these phenomena turn out to be distributed according to “the bell curve”:

The bell curve, known in the 19th century as the “Law of Error”, is now usually called the normal or

Gaussian distribution. It is the graph of the function ex
2/2/
√

2π (scaled and translated appropriately).
We will see how Gauss derived this function from a completely backward argument – a brilliant leap of
intuition, but pretty sketchy math. We’ll see how the great probabilist Laplace explained its ubiquity
through the Central Limit Theorem. (Maybe you’ve learned about CLT in your statistics class . . . but
do you know the proof?) We’ll talk about how the normal distribution challenged the nineteenth
century concept of free will. Finally, we’ll look at some other mathematical contexts in which the
normal distribution arises – it really is everywhere!

Prerequisites: Integral calculus. (There will be a lot of integrals!).

The Combinatorial Nullstellensatz. (Yuval)

You might well ask, ”What is the combinatorial Nullstellensatz?” That would certainly be a question.
It may well even be a question that we will address in this class. When I say “we”, I refer to you, the
students who will attend this class, and Yuval, who will teach it. However, “we” does not include me,
Ari, the person writing this blurb at Yuval’s request, because I do not know what the combinatorial
Nullstellensatz is. I suspect that it similar to the plain old Nullstellensatz, but somewhat more

5Here is a worse, but potentially more informative, blurb: The Combinatorial Nullstellensatz is one of the most versatile
tools I know, and it can be used to solve a huge range of problems and prove a huge range of theorems. This is particularly
surprising because it’s nothing more than a very simple statement about how the roots of polynomials can be arranged.
In this class, we will be focusing on the applications of this theorem, primarily ones from algebra, graph theory, and
number theory.
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combinatorial. Note that the word “Nullstellensatz” comes from the Tagalog word “Null”, meaning
“zero”, and “stellensatz”, meaning “stellensatz”. Anyway, you should come to this class, unless you’re
not interested in it, but honestly I think I’ll be okay either way5.

Prerequisites: None.

The Fundamental Group. (Aaron)

The fundamental group is an algebraic invariant we can attach to a geometric space which tells us
about the holes in that space. For example, the real line has trivial fundamental group because it
has no holes, while the circle has nontrivial fundamental group. As an application, we will prove the
Borsuk-Ulam theorem, which implies that at any time, there are always some two points on exact
opposite sides of the earth, with the same temperature and barometric pressure. We will use this to
show you can always slice any ham sandwich, (however lopsided) with a single cut, so that there is
the same amount of both pieces of bread and ham on each side of the slice.

Prerequisites: An understanding of open and closed subsets of Rn. Group theory is not a prerequisite
though it may be helpful to take simultaneously if you have never seen it before.

The Kakeya Conjecture. (Yuval)

If you’ve ever carried a ladder, you know that turning a corner can be very tricky. But in the
early 20th century, the Japanese mathematician Sōichi Kakeya tried to understand just how tricky
this is. In this class, we’ll try to answer this question. Along the way, we’ll encounter one of the most
important open problems in analysis, we’ll see how polynomials can magically make our problems
disappear, and we’ll find out why this nice, simple shape

is much worse than this horrifying monstrosity:

Prerequisites: None.
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The Kakeya Maximal Conjecture. (Yuval)

Do you like the Kakeya Conjecture, but feel that it’s too plain? If so, you might be interested in
taking it. . . to the max.

In this class, we’ll learn about the Kakeya Maximal Conjecture, which is an important strengthening
of the Kakeya Conjecture. Much of the recent progress on the Kakeya Conjecture (including the proof
of the conjecture for the case n = 2 that we saw on the last day of class in Week 1) has actually been
progress on the Kakeya Maximal Conjecture.

In this class, we’ll learn what the Maximal Conjecture is, and why it’s such a useful framework for
proving Kakeya-type results.

Prerequisites: The Kakeya Conjecture.

The Logistics of Zombies: Cobwebs and Chaos. (Beatriz)

A zombie outbreak has been detected at Math Camp. Fearing for their lives, Math campers are trying
to predict how the zombie population will evolve in time. After doing some research, they chose the
logistic map as their model. The logistic difference equation is given by

xn+1 = rxn(1− xn) where 0 < r ≤ 4,

where xn represents the fraction of zombies in our population after n days, and r is the growth rate
of the zombie population at Math Camp.

After a brief introduction to discrete dynamical systems, we will explore the logistic map and see
that it exhibits many different types of behaviour depending on the value of the parameter r. It turns
out that this rather innocent looking equation is an excellent example of a very simple non-linear
dynamical equation that can exhibit chaotic behaviour.

Since we are interested in long term behaviour, doing computations by hand becomes very tedious
and time consuming. So in order to study the logistic map, we will use Mathematica to write an
interactive program that will allow us to graphically explore the various properties of this map.

We will write the code to generate both cobweb diagrams and a time series plot of the iterates of
the logistic map, like the ones below, for different parameters r and different stating points x0. This
will allow us to see how changing the parameter r gives rise to several different behaviours.

We will also construct a bifurcation diagram which is an excellent way to summarize the range of
different long-term behaviours that arise as r increases. Using a bifurcation diagram we will see that
for r > 3.57, chaotic behaviour arises, but there are also what we call “windows of stability”, in which
for some values of r > 3.57 some stable orbits occur, giving rise to oscillating populations.

Prerequisites: Mathematica Workshop.

The Mathematics of Voting. (Mira & Ari)

Note: this class is a Superclass! It meets for two periods a day, plus up to one hour
of TAU (though we may not always need that full hour). On the other hand, this class
does not assign homework: you will spend a large part of your time in class solving (fun)
problems, but you won’t need to do any work outside of class.

Everyone knows that elections involve choices. But it turns out that the most important choice
is one that most voters don’t even think about: it is the choice of voting system, including what
information gets collected from the voters and how this information is used to determine the winner
(or set of winners). For instance, do the voters get to list only their first choice of candidate or do
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they get to rank all the candidates? Do we split the country into geographic districts each of which
elects a single representative, or should everyone in the country have a say in the composition of the
legislature as a whole? And of course, once the votes are in, what algorithm do we use to select the
winner(s)?

Voting theory is the study of voting systems and their properties, which are often completely un-
intuitive and pathological. The choice of voting system can have a huge effect on the outcome of an
election, so this topic is obviously important from a political point of view. But it is also really fun
and cool math!

On Tuesday and Wednesday in class, we will introduce the basics of voting theory, explore different
single-winner systems, and prove some depressing theorems showing that no voting system can have
all the nice properties you want it to have. If you’ve seen some voting theory before, much of this will
be review.

After that, we will move on to less standard topics: gerrymandering (Thursday), apportionment
(Friday), and partisan symmetry (Saturday). During some of the classes, you will be doing computer
simulations and/or working with real US data using a “geographic information system” (i.e. software
for manipulating and analyzing maps). Even if you’ve taken voting theory at Mathcamp (or elsewhere)
in the past, these topics are likely to be new to you.

Wednesday depends on Tuesday, but otherwise the topics are more or less independent, so you can
pick and choose which days of the class you want to attend. However, the schedule given above is
subject to change, so it you really want to see a particular topic, talk to Mira or Ari.

Prerequisites: None.

The Pseudoarc. (Steve)

Counterexamples are the best! We write down a totally reasonable statement — like ”You can’t cut a
ball into pieces, rearrange them, and get two balls of the same size as the original” — and then break
them with weird ideas. This class is about one particular counterexample: the pseudoarc.

Here’s a basic fact about lines: I can cut a line into two smaller lines. A reasonable guess — written
a bit informally — is that any “line-like” shape can be cut into two smaller “line-like” shapes. It turns
out this is wildly false: the pseudoarc is a kind of lineish thing which can’t be cut into two smaller
pieces. The fact that such a weird beast exists at all is surprising; even more surprisingly, in a precise
sense most shapes are like the pseudoarc!

In this class we’ll define the pseudoarc and sketch its basic properties and the proofs of these
properties. Do you like weird shapes of doom? Come to this class!

Prerequisites: Metric spaces.

The Stable Marriage Problem. (Beatriz)

Imagine we run a dating agency, and we must match n men with n women. We ask each man to
rank the women in order of preference; similarly, each woman is asked to rank the men. Is there an
algorithm to guarantee the best possible matches? In fact, to attract more clients, our agency offers
one million dollars to those whose matched partner leaves them for another client; can we build an
algorithm that ensures we will never have to pay up? We’ll also learn why it’s not a good idea for
women to wait for a man to propose. Can our algorithm be adapted to solve other similar problems,
such as the roommate problem?

Prerequisites: None.
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The Szemerédi Regularity Lemma. (Yuval)

The Szemerédi Regularity Lemma is one of the deepest and most powerful tools in combinatorics.
Roughly speaking, it tells us that all “big” graphs look “the same”, and that we can actually more or
less forget about where the edges of our graphs are. This may sound stupid, but its power cannot be
overstated.

In this class, we’d learn the Regularity Lemma and see some of its applications in number theory,
for which it was originally developed. By the end of the class, you’ll have some ideas that go into the
famous (and famously difficult) Green-Tao Theorem on arithmetic progressions in the primes.

Prerequisites: Intro to Graph Theory.

The Traveling Salesman Problem: Recent Breakthroughs. (Sam)

Suppose you wanted to visit all of the 559 Starbucks in Washington in as short a time as possible; this
problem can be phrased as finding a Hamiltonian tour of minimum cost on a graph (i.e. finding the
shortest giant cycle visiting each of the 559 Starbucks exactly once). This example is one of the most
fundamental applications of the Traveling Salesman Problem6 (TSP). Starbucks aside, the TSP is an
important problems in mathematics and computer science that has taunted researchers for decades.
It is hard (in a formal sense) to come up with an algorithm that exactly solves the TSP, and so
instead one searches for approximation algorithms: clever ways of finding approximate solutions with
theorems bounding those approximate solutions as “not too bad.”

The state of the art approximation algorithm dates back to 1976. In the 40+ years since, consider-
able effort has gone into trying to improve on that approach. In this course, we’ll discuss some of the
newest and most important breakthroughs. Doing so will involve involve a hodgepodge of ideas from
graph theory, combinatorics, and CS theory. We’ll also see how exciting

1.4999999999999999999999999999999999999999999999999996

is!
Finally: the goal of this class is to read a recent, exciting paper about the TSP. In class we’ll work

through the motivation, background, and key ideas in the paper. By the end of the course, however,
you should be set to read and internalize a pretty awesome research paper!

Prerequisites: You should feel fairly good about graph theory, including the phrases: complete graph,
Eulerian graph, Hamiltonian graph, tree, and matching. You should also know, be willing to learn on
the fly, or take on faith that a graph is Eulerian if and only if it is connected and every vertex has
even degree.

Topological groups. (Aaron)

Like groups? Like topology? Then you’ll love topological groups! An topological group is just a
topological space which is also a group.

We’ll prove some neat facts about topological groups, such as showing that open subgroups are
closed, finite index closed subgroups are open.

Prerequisites: Group theory.

6OK, not really.
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Topological Tic Tac Toe. (Beatriz)

The game of Tic-Tac-Toe is famously boring: it has a simple perfect strategy, and if two players play
this strategy, the game is guaranteed to end in a draw every time. The problem is that the topology
of the game board – a flat square – is too simple to allow for sufficiently many possible moves to make
the game interesting. So let’s allow the game board to have a more interesting topology. For example,
what happens when we play Tic-Tac-Toe on a torus? A Klein bottle? A Möbius band? Or some other
2-dimensional surface? Is there still a perfect strategy? How many different first moves are there?
Can two Tic-Tac-Toe games on different surfaces be equivalent?

Prerequisites: None.

Trail Mix. (Mark)

Is your mathematical hike getting to be a bit much? Would you like a break with a class that offers
a different topic each day, so you can pick and choose which days to attend, and that does not carry
any expectation of your doing homework? If so, why not come have some Trail Mix? Individual
descriptions of the topics for the five days can be found below.

Trail Mix Day 1: Exploring the Catalan Numbers. What’s the next number in the sequence
1, 2, 5, 14, . . . ? If this were an “intelligence test” for middle or high schoolers, the answer might be 41;
that’s the number that continues the pattern in which every number is one less than three times the
previous number. If the sequence gives the answer to some combinatorial question, though, the answer
is more likely to be 42. We’ll look at a few questions that do give rise to this sequence (with 42), and
we’ll see that the sequence is given by an elegant formula, for which we’ll see a lovely combinatorial
proof. If time permits, we may also look at an alternate proof using generating functions.

Prerequisites: None, but at the very end generating functions and some calculus may be used.

Trail Mix Day 2: Integration by Parts and the Wallis Product. Integration by parts is
one of the only two truly general techniques for finding antiderivatives that are known (the other is
integration by substitution). In this class you’ll see (or review) this method, and encounter two of its

applications: How to extend the factorial function, so that (
1

2
)! ends up making sense (although the

standard terminology used for it is a bit different), and how to derive the famous product formula

π

2
=

2

1
· 2

3
· 4

3
· 4

5
· 6

5
· 6

7
· · ·

which was first stated by John Wallis in 1655.

Prerequisites: Basic single-variable calculus.

Trail Mix Day 3: The Prüfer Correspondence. Suppose you have n points around a circle, with
every pair of points connected by a line segment. (If you like, you have the complete graph Kn). Now
you’re going to erase some of those line segments so you end up with a tree, that is, so that you can
still get from each point to each other point along the remaining line segments, but in only one way.
(This tree will be a spanning tree for Kn). How many different trees can you end up with? The answer
is a surprisingly simple expression in n, and we’ll go through a combinatorial proof that is especially
cool.

Prerequisites: None.
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Trail Mix Day 4: The Jacobian Determinant and
∑∞

n=1

1

n2
. How do you change variables in a

multiple integral? In the “crash course” in week 1 we saw that when you change to polar coordinates,
a somewhat mysterious factor r is needed. This is a special case of an important general fact involving
a determinant of partial derivatives. We’ll see how and roughly why this works; then we’ll use it to

evaluate the famous sum
∑∞

n=1

1

n2
. (You may well know the answer, but do you know a proof? If

so, do you know a proof that doesn’t require Fourier series or complex analysis?)

Prerequisites: Multivariable calculus (the crash course is plenty); some experience with determinants.

Trail Mix Day 5: A Tour of Hensel’s World. In one of Euler’s less celebrated papers, he started
with the formula for the sum of a geometric series:

1 + x+ x2 + x3 + · · · = 1

1− x
and substituted 2 for x to arrive at the apparently nonsensical formula

1 + 2 + 4 + 8 + · · · = −1 .

More than a hundred years later, Hensel described a number system in which this formula is perfectly
correct. That system and its relatives (for each of which 2 is replaced by a different prime number
p), the p-adic numbers, are important in modern mathematics; we’ll have a quick look around this
strange “world”.

Prerequisites: Some experience with the idea of convergent series.

Trig Functions by Hand. (Misha)

When you learn about trig functions, you typically memorize a few of their values (for 30◦ or 45◦, say)
and if you want to know any of the other values, you get pointed to a calculator.

Has that ever seemed unsatisfying to you? If so, take this class, in which we’ll see that finding
some of these values is as easy as solving polynomials, and approximating all of them is as easy as
multiplication. If time allows, we’ll learn how to compute inverse trig functions, and also how to
quickly find lots of digits of π.

Prerequisites: Be familiar with the formula eix = cosx+ i sinx.

Turing and His Work. (Sam)

It’s hard to understate how remarkable of a person Alan Turing was. His contributions to mathematics
are as broad as they are significant: he was instrumental in breaking encrypted Enigma messages, laid
much of the groundwork for theoretical CS, wrote computer programs before anything even vaguely
resembling today’s computers existed, and towards the end of his life, started working in mathematical
biology. He is described as “shy and diffident” and “fairly clumsy,” but also as a “a warm, friendly
human being” who “was obviously a genius, but [an] approachable and friendly genius [who was]
always willing to take time and trouble to explain his ideas” and who was “funny and witty.” He was
an avid fan of chess, both writing perhaps the first computer program to play chess and inventing his
own form of chess-sprinting, and ran marathons at a near-Olympian level.

This class is a seminar in which we’ll try to get to know who Turing was as a person, through a
variety of lenses. Day 1 will be primarily social history; we’ll look at some of the major events in his
life and get a better read on his personality. Then we’ll transition to seminar, where we’ll read and
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discuss some of his papers. Finally, we’ll switch gears again, and try to learn about Turing Machines
from one of Turing’s papers!
Caveat Emptor: This is a seminar style course, so “homework required” means that some reading
(15 minutes to an hour) will be required. The reading is vital to the class. On the plus side, you get
to read actual mathematics papers, read papers written by Turing, and learn directly from Turing
through them!

Prerequisites: None!

Underhanded Tricks with Markov Chains. (Misha)

When I am not at Mathcamp, the activity I am doing is updated from hour to hour by the following
rules (numbers on arrows denote probability):

Sleep Math Coffee1/3

2/3

1/2

1/2

3/4

1/4

This is an example of a Markov chain, and questions we might ask about it include the following:

• What fraction of the time am I doing work?
• How long will it take me to get home?
• What’s the probability I’ll go for a whole day without coffee?

All of these questions can be answered in a boring way: by solving systems of linear equations. In
this class, we’ll learn to solve them in more exciting ways: by defining a betting game about what
I’m doing, granting me the power of time travel, or transforming the Markov chain into an electric
network.

Prerequisites: None; I’ll make some offhanded references to linear algebra and graph theory, but you
will not need either one to follow the class.

Unique Factorization Domains. (Alfonso & Kevin)

You know that every integer can be written as a product of primes in a unique way. But, are you sure
this is true? It turns out that proving the uniqueness part is not easy at all, even though we all take
this fact for granted since kindergarden!

In this class you learn how to prove this rigorously, and you will also study other “number systems”
where the same result is true, and where it fails. Sometimes the uniqueness part fails. Sometimes
some numbers cannot be written as product of primes at all! Pathological examples are delicious.

This is an IBL class, where you will be doing most of the work yourselves, while we help you. There
will be a daily handout, and we will expect that you finish some problems during TAU if you could
not do them during class (since otherwise you will get lost on the next day).

Prerequisites: The class class will be easier if you know what a ring is and what an ideal is. You can
still take the class if you do not know this, as long as you are willing to work hard (perhaps with our
help during TAU).
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Urban Planning. (Luke Joyner)

Cities, both real and imaginary, are as complex as anything humans have ever created. On the one
hand, they are consummate examples of structure and planning, as profound and intricate as a good
fugue. On the other hand, they are the messy artifacts of time and people doing unpredictable things,
artifacts of politics and culture and power and resistance and greed... they can become characters in
our lives, friends even. How can we look at cities to understand them, appreciate them... imagine
them? This class will be a project-based introduction to cities and urban design, including a dive into
the geometry and topology of city grids and networks. It will include some interesting math (mostly
in problems to work on, rather than lecture), but will not be exclusively math, because while math
bubbles up everywhere when you think about cities and places, it’s necessary to look at them in other
ways too. So we will walk all those places, sometimes randomly, sometimes with intent, and use what
we’ve learned, and our own life experience, to try and redesign Tacoma’s streets by the end of the
week. Cause we’re here, and we’re crazy like that.

Prerequisites: Basic understanding of Graph Theory (Note: drawing skills are not required, but draw-
ing by hand or on the computer will be an important part of our final project; I will lead an optional
seminar on drawing techniques for anyone interested on Wednesday or Thursday.) .

Using quaternions to describe symmetries of Platonic solids. (David Morrison)

TBA

Prerequisites: TBA.

Vertex-Transitive Polytopes. (Viv)

We’re going to spend this class studying highly symmetric shapes, for differing definitions of “highly
symmetric” and “shapes.” For starters, we’ll define regularity and prove that the number of regular
polytopes in n dimensions is given by one of my all-time favorite sequences:

1,∞, 5, 6, 3, 3, 3, 3, 3, 3, 3, . . .
Then we’ll talk about relaxing regularity to vertex-transitivity. This gives us a lot more leeway to
think about shapes that we’d really like to be able to call highly symmetric; for example, a soccer
ball is vertex-transitive but not regular. We’ll talk about what happens when we try to construct
vertex-transitive shapes that have many vertices, and what happens with shapes in many dimensions.
Along the way, we’ll discuss discrete Gauss-Bonnet and Euler characteristic.

Prerequisites: None.

Wallpaper Patterns. (Susan)

Your wallpaper is a fascinating mathematical object! Well, maybe not your wallpaper in particular—
you may not even have wallpaper. However, any repeating pattern that we use to decorate a wall is
an example of a mathematical object called a “wallpaper pattern.”

In this class we will be discussing the classification of wallpaper patterns. We will explore a beautiful
topological argument that shows that there are exactly seventeen distinct types of wallpaper pattern.
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Expect lots of drawing, cutting, pasting, folding and smershing—this is a hands-on class!

Prerequisites: None.

Weak Separation. (Kevin)

Here’s a fairly unremarkable-looking combinatorial definition. Label n points around a circle in order
from 1 to n, and let S and T be k element subsets of the points. We say S and T are weakly separated
if we cannot find a chord with endpoints in S − T and a chord with endpoints in T − S that cross.
Symbolically, if S and T are k element subsets of 1, 2, . . . , n, then they are weakly separated if there
do not exist a, c ∈ S − T and b, d ∈ T − S so that a < b < c < d or b < c < d < a.

It turns out this harmless definition hides many secrets. In 1998, it was conjectured that if you try
to collect as many k element subsets of 1, 2, . . . , n as you can so that any two are weakly separated from
each other, you’ll always end up with exactly k(n− k) + 1 of them. This so-called “purity conjecture”
took over a decade to prove, and along the way this innocent idea of weak separation made a crucial
appearance in the nascent study of cluster algebras, among several other modern topics.

In this class, we’ll get a glimpse of what cluster algebras are and how weak separation gets involved
in one particularly beautiful cluster algebra. We’ll also develop the combinatorics of wonderful objects
called plabic graphs to start shedding some light on the purity conjecture.

Prerequisites: None.

Welzl’s theorem on graph homomorphisms. (Jalex)

A graph homomorphism f : G→ K is a function from the vertex set of G to the vertex set of K such
that if (x, y) is an edge of G, then (f(x), f(y)) is an edge of K. Say that G < K if there exists a
homomorphism from G to K but there does not exist a homomorphism from K to G. In this class,
we’ll prove a theorem of Welzl: The partially order set of finite graphs with < is dense. In other words,
if G < K, then we can always find H such that G < H < K.

Prerequisites: Know what a graph is. Know what a function is.

What is Homology? (Apurva)

Enough said.

Prerequisites: Linear algebra,
when I inadvertently utter the phrase ’topological space’ in class you should be happy and not sad.

What’s It Like to Live in a Hyperbolic World? (Linus)

The video game HyperRogue takes place in a hyperbolic plane. I learned what the hyperbolic plane
is like from playing this game. Come to the computer lab and play this game for one hour.

Prerequisites: None.

What’s The Deal With e? (Susan)

The continued fraction expansion of e is
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1 +
1

0 + 1
1+ 1

1+ 1

2+ 1

1+ 1

1+ 1
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1+ 1

1+ 1

6+ 1

1+ 1

1+ 1

8+ 1

...

Okay, but seriously, though, why?!?! Turns out we can find a simple, beautiful answer if we’re
willing to do a little integration. Or maybe a bit more than a little? Come ready to get your hands
dirty—it’s gonna be a good time!

Prerequisites: Familiarity with integration by parts, and basic partial fractions. Campers who are
already familiar with continued fractions can skip the first day.

Young Tableaux. (Kevin)

A standard Young tableau (SYT) is a way to fill a portion of a grid of boxes with the first n positive
integers so that rows and columns are increasing. For example, here are all the SYT with three boxes:

1 2 3
1 2
3

1 3
2

1
2
3 .

Notice that the shape in the middle corresponds to two different SYT. A natural question to ask, then,
is how many different SYT there are of a given shape.

In this class, we’ll study the wonderful world of combinatorics associated with counting the number
of SYT. We’ll see a beautiful bijection between pairs of SYT of the same shape and permutations.
We’ll also meet the celebrated hook length formula of Frame, Robinson, and Thrall, which was the
subject of recent controversy for trivializing a USAMO problem from 2016.

Prerequisites: None.
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Colloquia

Algebra and the Internal GPS. (Nora Youngs)

When you think of neuroscience experiments, one thing which may come to mind is a scientist in a
lab coat running rats through a maze. But how exactly are those rats learning to navigate that maze?
Part of the answer lies with a set of neurons called place cells, which are so named because they are
specifically active for certain locations. We’ll consider an algebraic way to extract useful geometric
information from the neural data of place cells, and explore how that information can tell us something
about the animal’s environment.

Covering Spaces and Square Dancing. (Alfonso Gracia-Saz )

A covering space of a topological space (for example a surface or a curve) is what you get when you
“unfold” it. For instance, you can unfold a circle entirely and get a line, or unfold it partially and
get ... another circle. You could also unfold a torus, and get another torus, a cylinder, or a plane.
You can unfold almost anything, like a Klein bottle or GL(n), but you cannot unfold a Hawaiian ring.
Interestingly, when we unfold a topological space, paths that started and ended at the same point end
up wandering in space, creating something called monodromy.

Covering spaces have many applications in daily life, such as Lie groups, quantum field theory, or
square dancing. What does square dancing have to do with covering spaces? Usual square dances
have 8 dancers, but there is a 12-dancer variant called “hexagon dancing”. SD callers often go through
a lot of trouble to explain the rules for hexagon squares, and are usually at a loss to figure out when
a choreography that resolves in regular squares will resolve in hexagon squares. Their lives would
be so much simpler if they simply said “hexagon squares are a triple cover of the quotient of regular
square dancing by a Z/2Z symmetry and a choreography that resolves in regular squares also resolves
in hexagons if and only the path of every boy composed with the inverse of the path of his girl has
winding number around the center congruent to 0 mod 3.” In other words, this is a real-life application:
a question posed by dancers that algebraists managed to solve.

This talk will be illustrated with shiny animations, courtesy of Ryan Hendrickson. No topology or
dancing knowledge will be assumed.

Down the Rabbit Hole. (Anti Shulman)

Come enter a world where everything you think you know about mathematics is in doubt: where not
every subset of a finite set has to be finite; where a real number need not be either positive, negative,
or zero; and where the Intermediate Value Theorem and Extreme Value Theorem can fail to hold.
This is the land of constructive mathematics, where we deny the law of excluded middle (“everything
is either true or false”) and forbid proof by contradiction (“if something isn’t false, it must be true”).

Why would we do such a thing? (Other than to annoy your calculus teacher, I mean.) It turns
out that like Alice’s rabbit hole, ours is inhabited not only by weird creatures, but also by magic.
In constructive mathematics, every function is continuous, everything that exists can be found by a
computer, and we can do calculus with true infinitesimals rather than epsilon-delta limits. Arguably,
constructive mathematics reflects the “real world” even better than classical mathematics does!

(This colloquium will be just a taste of constructive mathematics; to learn more about it, come to
my class this week.)
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Farey Fractions and Plane Geometry. (Noah Snyder)

How do you find the best way to approximate an irrational number using rationals? How good are
these approximations? These questions can be answered using certain properties of the Farey sequence.
These patterns in the Farey sequence can in turn be proved using plane geometry. No background will
be assumed (in particular, this talk should be understandable to people who haven’t seen continued
fractions while still being interesting to people who have.)

Games People (Don’t) Play. (Steve)

Let’s play a game! Hackenbush is the best game for people who don’t like art—we start with a pretty
drawing, and then get rid of it, and the first person who can’t make less art loses.

Hackenbush is a really mathematically interesting game. One easy thing we can say about a game
is whether a given player has a winning strategy. But there’s more we can do: it turns out we can
assign numbers to games, measuring how much a given player wins the game, and do arithmetic with
these numbers by combining the games in certain ways. Hackenbush is a particularly good example
of this. So Hackenbush is also the best game for people who like adding numbers.

But we can only get some numbers this way. I want more numbers! It turns out the right thing
to do here is consider infinitely long Hackenbush games. Actually playing an infinite game isn’t
really something we can do, but they turn out to be very mathematically interesting and useful, and
Hackenbush is one of the easiest impossible games to play. So infinite Hackenbush is the best game
for people who don’t exist.

In this colloquium I’m going to pretend not to exist—come pretend not to exist with me!

Hydras. (Susan)

The Lernean Hydra was a legendary monster with many heads, poisonous breath, and an all-around
bad attitude. The hero Heracles was sent to kill the beast, but found that whenever he cut off one of
its heads, two would grow back in its place. What’s a hero to do? We will attempt to slay a different
kind of Hydra. In the Hydra game, we start with a rooted tree (our Hydra), and in each turn, we
remove a “head”. On the nth turn, n new Hydra heads will grow back in its place. Heracles’s story
has a happy ending—he was able to kill the Lernean Hydra with an extremely clever plan of attack.
What sort of cleverness do we need to kill our Hydra? Come and find out!

Many Campers Split Pizza. (Asilata Bapat)

How can we split a circular pizza among n campers and make sure everyone gets an equal share? The
usual way is to slice it by diameters at equal angles, so that the number of pieces is a multiple of n.

But this is not the only easy solution! In this talk we will discover some other surprising ways to
solve this problem, with the help of some Euclidean geometry, some calculus, and some pictures.
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Opinionated Primes. (Zach Abel)

Many mathematicians can tell you about their favorite prime number, but you’ve never
met a prime number like this one7 that will tell you, at length8, about its favorite math-
ematician! Wait, that’s a massive number. How do you know it’s actually prime? My
computer said so. But how does the computer know? It asked the Fibonacci numbers. And
how did you find a prime so large, anyway? By setting Pascal’s triangle on fire. Who is
this prime’s favorite mathematician? What does that even mean, anyway? You’ll have to
ask it!

These questions (and answers!) will be discussed in detail during the talk, as well as all
the prime-number mischief they unlock.
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8A 5, 671-digit length, to be exact. . .
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Rational Tangles. (Tim!)

Imagine four people standing in a circle holding the ends of two ropes. A caller gives them instructions
to move around, twisting the ropes into a tangle. After some time, a magician enters the room. The
caller tells the magician a single rational number: with just that information, and without looking at
the ropes, the magician gives instructions for how to undo the knot.

This magic trick is just one of the things we’ll learn about rational tangles, which are a systematic
approach, proposed by Conway, to describing knots. In this colloquium, we’ll see how to build com-
plicated knots from simple pieces, and how to use group theory to untangle the secrets of their hidden
structure.

Squaring the Circle. (Andrew Marks)

The idea of dissecting a set and rearranging its pieces to form another set dates back to the ancient
Greeks. One application of this idea is finding formulas for areas of polygons. For example, we can
dissect a parallelogram into a triangle and trapezoid and then rearrange them to form a rectangle.
This idea can be used to show that the area of a parallelogram is its base multiplied by its height.
Building on these ideas, mathematicians have been investigating the general problem of when we can
show that two shapes have the same volume by cutting them into congruent pieces.

In two dimensions, it turns out that this always works for polygons—a famous theorem of Wallace-
Bolyai-Gerwien states that any two polygons of the same area can be chopped into smaller congruent
polygons. This theorem realizes the dream of the ancient Greeks, and has a beautiful proof using
pictures.

The analogous problem in three dimensions was one of Hilbert’s famous problems. Breakthrough
work of Dehn from 1901 showed that there are two polytopes of the same area which are not dissection
congruent. Dehn proved this by introducing an important geometrical invariant called the Dehn
invariant.

More recently, mathematicians have been thinking about similar problems for shapes that are
not polygons. In 1925 Tarski asked if a disk can be partitioned into finitely many sets which can
be reassembled to form a square of the same area. This question became known as Tarski’s circle
squaring problem. It remained open until Laczkovich gave a positive solution in 1990. At the end of
the talk, we’ll say a little about Laczkovich’s solution, and our recent result joint with Spencer Unger
that gives an explicit way to square the circle.

The Icosian Game. (Misha)

Can a knight visit all 64 squares of a chessboard in 63 jumps, then come back to the start? What if
we ask the same question for a 4 × 4 board? What if we’re instead walking around the vertices of a
dodecahedron?

In this colloquium, we will figure out when the answer to such a question is definitely “yes”, and
when it is definitely “no”. In between, there will be a disturbingly large range of cases where we can
only say “I don’t know”. But that’s okay, because I’ll also explain why, if you could always solve this
problem easily, then you’d be able to win a million dollars, steal billions of dollars, and break all of
mathematics as we know it.
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The Party Problem and Ramsey. (Lynn Scow)

The Party problem states that at any party with at least 6 people, there will be 3 among these 6 who
all know one another, or 3 among these 6 who are mutually strangers. Actually, it’s not a problem!
It’s fun to meet new people, and it’s fun to catch up with old friends! What is the minimal number
of people (n) that need to be at the party to find 4 who all know one another, or 4 who are mutually
strangers? In this talk I’ll given an introduction to what are called Ramsey numbers (the numbers n
above) and mention some extensions of this idea to other situations.

Twenty-Seven Lines. (David Morrison)

Let f(x, y, z) be a polynomial of degree 3 in 3 variables, and suppose that at every point of the
corresponding cubic surface S = {f(x, y, z) = 0} the tangent plane to the surface S is well-defined.
Suppose we seek straight lines in space which lie completely within S. Under suitable conditions, there
are exactly 27 such lines! We will see why this is true, and investigate the intricate combinatorial
structure which the lines posses. (For example, each line meets exactly 10 other lines.)

The “suitable conditions” include: (1) thinking carefully about the behavior of S “at infinity” and
the possibility that some of the lines may be located “at infinity,” and (2) solving equations over the
complex numbers rather than over the real numbers. (Over the real numbers, the conclusion is “at
most 27 lines.”)

In spite of these caveats, there exist polynomials with real coefficients having exactly 27 real lines,
and we will see an example.

Using Math to Protect Democracy. (Mira)

Every 10 years, the US has a census to determine the number of representatives each state should get
in Congress. Then the legislature in each state comes up with a districting plan: a way of splitting
the state into the correct number of regions (districts) of equal population, each of which will elect
one representative to Congress.

The problem is, the specific choice of districting plan can have a huge effect on the results. For
instance, suppose a state of 400,000 people is allotted four representatives. There are two political
parties, A and B, and Party B happens to be in power at the time of the census. It does some polling
and adopts the following districting plan:

District A supporters B supporters

1 85,000 15,000

2 45,000 55,000

3 45,000 55,000

4 45,000 55,000

Now B can count on winning 3 out of 4 districts in the next election, even though 55% of the the
voters in the state support A!
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This kind of thing happens all the time; both Republicans and Democrats do it. It seems so obviously
wrong that you wonder how it can be legal. But it turns out that determining whether a districting
plan is “fair” or “neutral” is much more complicated than you might think. Right now, many people,
including lawyers, political scientists, computer scientists, and mathematicians are working hard to
figure out a solution to the gerrymandering problem before the next census in 2020. You can help!
Come to this talk to learn how.

Why are drums shaped by number theory sometimes louder than others? (Djordje Milice-
vic)

Simple harmonics, such as monochromatic light waves or heart rhythms or standing patterns of a
vibrating string, are basic building blocks of analysis: a compound signal like sunlight or the sound of
your favorite instrument is composed of (many) single-color bands or single-pitch tones.

On more general spaces, flat ones or those with some curvature, the role of simple harmonics is played
by eigenfunctions, objects central in contexts ranging from spectral geometry, a field whose spirit was
captured by Mark Kac’s famous question “Can you hear the shape of a drum?”, to quantum mechanics,
where they represent “pure quantum states” and where their concentration of mass is closely related
to geometry and dynamics.

After describing some of these fundamental modes and what they can tell us about the underlying
spaces, we will discuss what eigenfunctions have to do with number theory (things like primes, or
divisors, or Fermat’s Last Theorem) and how additional symmetries of arithmetic or geometric nature
can drive their exceptional behavior not generically observed or predicted by physical models.
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