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Background for the 2014 Qualifying Quiz

Number of paths through a grid (Problem #6)

As stated in Problem #6, the number of monotonic paths from the bottom left to the top right corner of an m× n
grid is (

m + n

m

)
, which is the same as

(
m + n

n

)
.

If you are unfamiliar with this notation,
(
r
k

)
is the number of ways of choosing k different objects out of a set of r

objects. Sometimes, instead of
(
r
k

)
, people write C(r, k) or rCk; these are all just different notations for the same

thing. For instance, there are 6 ways of choosing 2 letters from the word MATH (assuming the order does not
matter): MA, MT, MH, AT, AH, and TH. Thus

(
4
2

)
= 6.

The general formula for
(
r
k

)
is (

r

k

)
=

r!

k!(r − k)!
.

If you are unfamiliar with this formula, there are many places on the Web where you can learn about it. One good
place to start is The Art of Problem Solving (www.artofproblemsolving.com). Go to their “Videos” section, look for
the collection of videos on “Counting and Probability”, and watch the videos for Sections 4.2 - 4.3. If you’ve already
seen the concept and formula for

(
r
k

)
, but don’t understand what this has to do with counting monotonic paths on

a grid, watch the video for Section 5.2.

Basic number theory

Congruence modulo n

Let n be a positive integer. We say that two integers a and b are congruent modulo n if a and b differ by some
multiple of n. We write this as a ≡ b (mod n). Thus, for instance:

• 3 ≡ 8 ≡ −2 (mod 5)

• All even integers are congruent to 0 modulo 2; all odd integers are congruent to 1 modulo 2.

All the integers that are congruent to each other modulo n are said to be in the same congruence class modulo
n; clearly, all of them have the same remainder when you divide them by n. Since the possible remainders after
division by n are 0, 1, . . . , n− 1, we can split all the integers into exactly n different congruence classes modulo n.
For example, the five congruence classes modulo 5 are:

• Integers congruent to 0 modulo 5: {. . . ,−15,−10,−5, 0, 5, 10, 15, . . . }

• Integers congruent to 1 modulo 5: {. . . ,−14,−9,−4, 1, 6, 11, 16, . . . }

• Integers congruent to 2 modulo 5: {. . . ,−13,−8,−3, 2, 7, 12, 17, . . . }

• Integers congruent to 3 modulo 5: {. . . ,−12,−7,−2, 3, 8, 13, 18, . . . }

• Integers congruent to 4 modulo 5: {. . . ,−11,−6,−1, 4, 9, 14, 19, . . . }

If a is any integer, we denote the congruence class of a modulo n by [a]n. Note that if b is another integer in the
same congruence class, then [a]n = [b]n. For instance, [2014]2 is the same as [0]2 and [2]2 and [−1000]2: these are
all different ways of referring to the same congruence class modulo 2 (the set of all even integers). Similarly,

[2014]5 = [4]5 = [−1]5 = {. . . ,−11,−6,−1, 4, 9, 14, . . . }.
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Modular Arithmetic

In arithmetic modulo n (also known as modular arithmetic), we are interested not in the integers themselves, but
in their congruence classes modulo n. For instance, in arithmetic modulo 2, we only care if an integer is even or
odd; we are interested in facts like “the sum of two odd integers is always even” or “the product of two odd integers
is always odd”. In arithmetic modulo 10, we are care only about the last digit of a number in base 10; we are
interested in facts like “if you multiply a number that ends in 3 by a number that ends in 4, the last digit of the
result will always be 2.”

The following general theorem is easy to prove, but very important. It says that when you are working modulo n,
you can replace any integer in your calculations by any other integer in the same congruence class, and the final
answer will be the same.

Theorem 1: If a ≡ c (mod n) and b ≡ d (mod n) then a + b ≡ c + d (mod n) and ab ≡ cd (mod n).

Proof: Since a ≡ c (mod n), we know that a and c differ by some multiple of n. In other words, there exists an
integer r such that a = c + rn. Similarly, there exists an integer s such that b = d + sn. Then

a + b = (c + rn) + (d + sn) = c + d + (r + s)n

ab = (c + rn)(d + sn) = cd + csn + drn + rsn2 = cd + (cs + dr + rsn)n

Thus a+ b and c+ d differ from each other by a multiple of n, so a+ b ≡ c+ d (mod n); similarly, ab ≡ cd (mod n).
QED.

Theorem 1 allows us to think of modular arithmetic in a subtly different way. Originally, when we said, e.g.,
“3× 5 ≡ 1 (mod 7)”, we simply meant: “The integer 3× 5 (i.e. 15) and the integer 1 are congruent modulo 7 (i.e.
they differ by a multiple of 7).” But now that we have Theorem 1, the statement “3 × 5 ≡ 1 (mod 7)” becomes a
much stronger assertion. It says: “Any integer from the congruence class of 3 times any integer from the congruence
class of 5 gives you an integer from the congruence class of 1 modulo 7”.

Example 1: What is the remainder of 71000 when divided by 8?

Solution: This is the same as asking: “What is the congruence class of 71000 modulo 8?” By the theorem, since
7 ≡ −1 (mod 8), we can immediately conclude that 71000 ≡ (−1)1000 (mod 8). But (−1)1000 is just 1. Thus the
answer is 1.

Example 2: Show that an even number that is not divisible by 4 cannot be a perfect square.

Solution: If k is an even number that is not divisible by 4, then k ≡ 2 (mod 4). Thus we simply need to show that
the equation x2 ≡ 2 (mod 4) has no solutions. Since there are only four congruence classes modulo 4, Theorem 1
tells us that we only need to check four cases: x = 0, x = 1, x = 2, and x = 3. (Make sure you understand why the
theorem implies this.) Since

02 ≡ 22 ≡ 0 (mod 4) and 12 ≡ 32 ≡ 1 (mod 4),

we conclude that x2 ≡ 2 (mod 4) has no solutions.

Division modulo n, Part I

So far, modular arithmetic as we’ve described it is just a convenient notational tool for solving problems in regular
arithmetic. Both of our example problems were about integers, and we could have solved them without using the
word “modulo”, just by working with remainders.

But once you spend some time working modulo n, you get the sense that you’re actually dealing with a new kind of
arithmetic. For instance, if you’re working modulo 5, you start feeling that you’re in a world in which there are only
5 numbers (0,1,2,3 and 4), and these numbers have funny properties, like 4 + 2 = 1 and 2 = −3 and 2× 3 = 1. You
are tempted to say things like, “Well, if 2× 3 is 1, then shouldn’t 1/3 be 2?” And then you get confused, because
it is certainly not the case that 1/3 ≡ 2 (mod 5): congruence mod 5 isn’t even defined for fractions like 1/3, and
anyway, the rational numbers 2 and 1/3 don’t differ by a multiple of 5.

The way out of the confusion is to realize that what we really want to add and multiply are not integers but
congruence classes of integers modulo n. So let’s go ahead and define addition and multiplication of congruence
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classes in the natural way:
[a]n + [b]n = [a + b]n and [a]n[b]n = [ab]n.

Notice that for this definition to make any sense, we need Theorem 1. If one congruence class contains a and c and
another class contains b and d, then the sum and product of these two classes shouldn’t depend on whether we call
the first one [a]n or [c]n and the second one [b]n or [d]n. In other words, if [a]n = [c]n and [b]n = [d]n, we need to
be sure that [a + b]n = [c + d]n and [ab]n = [cd]n. This is exactly what Theorem 1 guarantees.

Now that we know what we mean by addition and multiplication of congruence classes mod n, we need to check a few
routine things to make sure that our new + and × work the way we expect them to. They are, after all, brand new
operations, which we’ve just made up from scratch! So to justify calling them +and ×, we need to check that they
satisfy all the usual properties like commutativity, associativity, and distributivity; that [0]n is an additive identity
(adding it to any congruence class doesn’t change the congruence class); that [1]n is a multiplicative identity; etc.
We’re not going to check all of that here; you can do it yourself (it’s pretty straightforward) or you can just take it
on faith that everything works out right.

Now, finally, we can write things like [2]5 + [4]5 = [1]5 and [2]5 × [3]5 = [1]5. And now it makes perfect sense to
write [1]5/[3]5 = [2]5. We just have to remember that what we mean is division of congruence classes, not numbers;
it is the inverse operation to multiplication of congruence classes.

If you found all of this abstraction a bit confusing, don’t worry too much. (You’ll definitely understand it all after
you go to Mathcamp.) The point is simply that you are allowed to divide 1 by 3 modulo 5, though you have to
change you theoretical framework in order to justify this rigorously.

In fact, it turns out that x/y is defined for any two congruence classes x and y modulo 5, unless y = [0]5. (Division
by zero is still not allowed.) To see this, let’s write down the multiplication table for congruence classes modulo 5.
(For better legibility, we have omitted the subscript “5” from the table; we’ll do this from now on when the context
is clear.)

× [0] [1] [2] [3] [4]

[0] [0] [0] [0] [0] [0]
[1] [0] [1] [2] [3] [4]
[2] [0] [2] [4] [1] [3]
[3] [0] [3] [1] [4] [2]
[4] [0] [4] [3] [2] [1]

Note that every non-zero row and column contains each congruence class modulo 5 exactly once. Thus, for any two
congruence classes x and y with y 6= [0]5, we can simply look for the entry x in the y column. If this entry is in row
z then x = yz, i.e. z = x/y.

On the other hand, consider the multiplication table modulo 8:

× [0] [1] [2] [3] [4] [5] [6] [7]

[0] [0] [0] [0] [0] [0] [0] [0] [0]
[1] [0] [1] [2] [3] [4] [5] [6] [7]
[2] [0] [2] [4] [6] [0] [2] [4] [6]
[3] [0] [3] [6] [1] [4] [7] [2] [5]
[4] [0] [4] [0] [4] [0] [4] [0] [4]
[5] [0] [5] [2] [7] [4] [1] [6] [3]
[6] [0] [6] [4] [2] [0] [6] [4] [2]
[7] [0] [7] [6] [5] [4] [3] [2] [1]

Note that there is no congruence class which, when multiplied by [2], gives [1] (or [3] or [5] or [7]). On the other
hand, there are multiple classes which, when multiplied by 2, give [0] (or [2] or [4] or [6]). Thus, however you try,
division by [2] is not defined. The same problem exists with division by [4] and [6]. On the other hand, the table
shows that division by [3], [5], and [7] works fine.

It’s not hard to guess the general pattern: working modulo n, you can divide by [c]n if and only if c is relatively
prime to n, i.e. GCD(c, n) = 1. Before we can prove this, we first need a very important result about the GCD
(greatest common divisor) of two integers, which at first glance seems completely unrelated to modular arithmetic.
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An important property of the GCD

Theorem 2. Let m and n be any two integers. Then GCD(m,n) is the smallest positive integer that can be
written as am + bn for some integers a and b.

Example. The GCD of 6 and 10 is 2. The t states that 2 can be written as 10a + 6b for some integers a and b;
indeed, 2 = 10 ∗ 2− 6 ∗ 3. Moreover, the theorem states that 2 is the smallest positive integer that can be written
in this form; indeed, it obviously won’t work for 1, since 10a + 6b will always be even, whereas 1 is odd.

Proof. Given integers m and n, consider the set of all integers of the form am + bn. Choose the smallest positive
integer in this set, say g = cm + dn.

To prove that g = GCD(m,n), we need to show two things:

(i) That m is divisible by g (written g|m) and similarly that g|n (i.e., g is a common divisor of m and n); and:

(ii) If d|m and d|n then d|g (i.e. any other common divisor of m and n is smaller than g).

To show that g|m, let’s try dividing m by g, possibly with a remainder. We obtain m = qg + r, where q is the
quotient and r is the remainder, with 0 ≤ r < g. Our goal is to show that r = 0. Let’s rewrite r as

r = m− qg = m− q(cm + dn) = (1− qc)m− (qd)n.

We assumed that g was the smallest positive integer of the form am+ bn, yet we now see that r is also of this form,
and r < g. Thus we are forced to conclude that r = 0, so g|m. By exactly the same argument, g|n, so (i) is proved.
To show (ii), suppose that d|m and d|n. Then clearly d|cm + dn, so d|g. QED

Division modulo n, Part II

Theorem 2 is a very powerful result in its own right. (In fact, it’s relevant for one of the Qualifying Quiz problems
this year.) Let us now use it to prove our conjecture about division modulo n:

Theorem 3. Working modulo n, you can divide any congruence class [a]n by [c]n if and only if GCD(c, n) = 1.

Note that to prove an “if and only” statement, we need to prove both directions of implication:

(⇒) If you can divide any congruence class modulo n by [c]n then GCD(c, n) = 1.

(⇐) If GCD(c, n) = 1, then you can divide any congruence class modulo n by [c]n.

Proof.

(⇒) If you can divide any congruence class by [c]n, then, in particular, you can divide [1]n by [c]n. Thus there
exists an integer b such that bc ≡ 1 (mod n). By the definition of congruence modulo n, this means that there
exists an integer a such that bc + an = 1. By Theorem 2, this means that GCD(c, n) = 1.

(⇐) Suppose GCD(c, n) = 1. Then, by Theorem 2, there exist integers a and b such that bc + an = 1. Then
bc ≡ 1 (mod n), so [b]n[c]n = [1]n.

This is not quite enough to say that [1]n/[c]n = [b]n; we also need to show that [b]n is the only congruence
class satisfying [b]n[c]n = [1]n. So suppose [b′]n is another class such that [b′]n[c]n = [1]n. Then

[b]n[c]n − [b′]n[c]n = [b− b′]n[c]n = [0]n,

which means that (b− b′)c is divisible by n. But since c and n are relatively prime, we conclude that b− b′ is
itself divisible by n, i.e. b ≡ b′ (mod n) and [b]n = [b′]n. This proves the uniqueness of [b]n, so [1]n/[c]n = [b]n.

Finally, if we want to divide any other congruence class [a]n by [c]n, we note that

[ab]n[c]n = [a]n[b]n[c]n = [a]n · [1]n = [a]n,

Uniqueness is proved exactly as above, so [a]n/[c]n = [ab]n. Thus any congruence class [a]n can be divided by
[c]n. QED.

Corollary.1 If q is prime, then we can divide by any congruence class modulo q except [0]q. In other words, for
any two integers a and c with c not divisible by q, the equation cx ≡ a (mod q) has a unique solution modulo q.

1A corollary is what mathematicians call an easy consequence of a previously proved theorem.
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