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9:05 Classes

ARML Power Rounds. (Misha, Tuesday–Saturday)
For those not in the know: ARML is a team-based high school math competition in the US. In one
part of the competition, called the Power Round, the entire team of 15 people works together on a
bunch of questions on the same topic.

In this class, we’ll work on some past ARML Power Rounds together, and talk about the math
behind the topics.

Chilis:

Homework: Recommended

Prerequisites: None

Differential Topology. (Kevin, Tuesday–Saturday)
It is often said that topologists can’t tell the difference between a donut and a mug. But if the mug
has some parts that aren’t so smooth, a differential topologist sure can distinguish them!

You may have heard of the Klein bottle, a surface (also known as a two-dimensional manifold)
that can be embedded in three-dimensional space, but with a self-intersection. It can, however, live
perfectly happily in four dimensions. We’ll use the power of differential topology to show that, in
general, we can fit any manifold of dimension d in 2d-dimensional space.

Chilis:

Homework: Recommended

Prerequisites: Knowledge of derivatives. We’ll talk about linear maps and continuous maps in Rn, but
there will be some first day homework questions to catch you up if you haven’t seen them before.

Related to (but not required for): DIY Hyperbolic Geometry (W1); How Curved is a Potato? (W2)

Public-Key Cryptography. (J-Lo, Tuesday–Saturday)
The e-commerce site parana.com has a problem: thousands of customers want to provide their credit
card info, but anything sent over the internet can be intercepted by pirates!

So parana.com produces a scrambling function, which customers can use to hide their sensitive info.
But here too there is a problem: for customers to be able to use it, this function must be public! So
what’s stopping the swashbucklers from just computing the inverse of this function and unscrambling
all the messages?
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“Public Key Cryptography” is a search for the best possible scrambling technique. Some common
candidates include RSA, Diffie-Hellman, and Elliptic Curve Cryptography; in addition to discussing
the pros and cons of each, we’ll see how all of these are actually special cases of the same deeper
problem.

Chilis: →
Homework: Recommended

Prerequisites: None

Related to (but not required for): Group Theory (W1); Intro Number Theory (1/2) (W1)

Representation Theory (2/2). (Aaron, Tuesday–Saturday)
This class is a followup to the first week of representation theory, where we applied various theorems
to classify all representations of various symmetry groups, such as those of platonic solids. Suitably
motivated, this week, we’ll explain why those theorems are true.

Chilis:

Homework: Required

Prerequisites: Linear algebra, group theory

Related to (but not required for): Group Theory (W1); Intro Ring Theory (W2); Linear Algebra (2/2)
(W2); The Outer Automorphism of S6 (W2); Representation Theory (1/2) (W3); Galois Theory (W3)

The Erdős Distance Problem. (Ben, Tuesday–Saturday)
Grab a piece of paper, and mark a bunch of points on it. Now, grab a ruler, and check how many
distances you can make by measuring the distance between two of your points. The Erdős Distance
Conjecture, very roughly, says that the number of these distances will grow almost linearly in the
number of points, no matter how carefully you try to keep the number of distances small. The
conjecture was first formulated in 1946 and was established to be true only in 2011, with quite a few
intermediate results.

In this course, we’ll explore a few of these intermediate results, starting with Erdős’s result from
the 1946 paper formulating the conjecture and going up to a result from the 1990s. This later result
will involve a few tools from graph theory and many useful analytic techniques. Although we won’t be
able to get to the full proof of the conjecture, we will see how a wide variety of mathematical ideas can
be brought to bear on one particular problem. We will also see some of the evolution of methods in
this problem, with later proofs relying on ways of attacking the problem that the first authors hadn’t
realized yet.

Chilis:

Homework: Recommended

Prerequisites: None; we will use some graph theory but I’ll cover what we need

10:10 Classes

Hat Problems ft. Hamming Codes. (Agustin, Friday)
There may come a time in your life in which you are imprisoned with only one way out: play a game
that involves you and some inmates wearing hats of two possible colors, and have at most one inmate
guess the color of their own hat wrong. And that’s if the prison guards are nice.

This class is meant to prepare you for the various cruel hat problems your prison guard will inevitably
force you to solve. We’ll start with a few puzzle-y hat problems, and then spend some of the time
attacking a trickier hat problem. To solve it we’ll have to talk about Hamming codes, which we can
use to transmit messages accurately, even if an error is introduced! After all, you know what they
say– come for the hats, stay for the linear error-correcting codes.
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Chilis: →
Homework: Optional

Prerequisites: None

Mathematical Art History. (Viv, Wednesday–Saturday)
Lucia Pacioli, one of Leonardo da Vinci’s contemporaries, is quoted as saying

“Without mathematics, there is no art.”
Now, it’s certainly easy for many of us to agree with that, but there are also many examples

throughout history of times when the art world was obsessed, wittingly or unwittingly, with mathe-
matical ideas. We’ll talk about some of these times, including topics like perspective, the golden ratio,
proto-Cubism, and fractals.

Chilis:

Homework: Recommended

Prerequisites: none!

Mathematics of Democracy. (Mira, Wednesday–Saturday)
Everyone knows that elections involve choices, but it turns out that the most important choice is one
that most voters don’t even think about. Before anyone can vote, you have to choose a voting system.
For instance, do we split the country into small districts each of which elects a single Congressional
representative, or do we use larger districts each of which elects several representatives? Do the voters
get to list only their first choice of candidate, or do they get to rank or rate all the candidates? And of
course, once the votes are in, what algorithm do we use to select the winner(s)? The choice of voting
system can have a huge effect on the outcome of an election, so this topic is obviously important from
a political point of view. But it also turns out to be really interesting mathematically.

During the first two days, we will focus on systems for electing a single person (e.g. a president). We
will prove some depressing theorems showing that no voting system can have all the nice properties
you want it to have, and that all voting systems are vulnerable to strategic voting. Then we will
move on to multi-winner systems (systems for electing a Congress or parliament), and talk about
apportionment, gerrymandering, and various methods of proportional representation.

If you’ve taken a voting theory class outside of Mathcamp, or at Mathcamp 2000 +N for N < 17,
you may know some of the material in the first day or two, but probably not the last three days. (This
stuff is rarely taught in standard voting theory courses.) If you took Mira and Ari’s voting theory
superclass at MC2017, the first three days will be mostly review, but the last two will be things we
didn’t cover last summer. Talk to Mira for more details.

Chilis:

Homework: Required

Prerequisites: none.

Related to (but not required for): Game Theory (The Economic Variety) (W1)

Teaching Computers to Read. (Greg Burnham, Saturday)
Human language is tantalizingly close to a formal system. We feel like there is a clear relationship
between the words we express and the information these words convey. At worst, we just need to be
a little more verbose and explicit. If this intuition is true, then we should be able to write computer
programs to perform linguistic tasks – like reading a document and answering questions about it. But
we’ve been trying to write such programs for 50 years, and the results are mixed at best.

This class will be a quick survey of some interesting topics in the (very broad) field of computational
natural language understanding. We’ll try to motivate why it’s so difficult to write computer programs
capable of performing linguistic tasks and then describe what tasks computers can currently perform,
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focusing on how recent algorithmic and technological progress has allowed for improved performance.
We will conclude by noting that the big problems remain unsolved and speculating on what might be
necessary for the next steps forward.

As a teaser, here is a simple example illustrating why computational language understanding is
hard. Consider the following two sentences, which differ only in the last word:

“The cat caught the mouse because it was clever.” “The cat caught the mouse because it was
careless.”

What does the pronoun “it” refer to in each sentence? Humans share a clear intuition about the
right answer to this question. And yet, consider what it would take to write a computer program with
this same capability. That’s the problem in a nutshell.

Chilis:

Homework: None

Prerequisites: None!

Related to (but not required for): MCMC (W2)

The Fundamental Group. (Larsen, Wednesday–Saturday)
What do a circle, a square, and the Republic of South Africa all have in common? They all have a
hole in the middle! We may be able to give a name to the hole (e.g. “Lesotho”) but the hole isn’t a
part of the original shape itself, despite still somehow being an intrinsic feature.

If X is topological space (a shape, with continuity properties), then there is is a special group
called the fundamental group of X or π1(X), with algebraic properties depending on the topological
characteristics of X. If X doesn’t have any holes in it (e.g. if X is a line), then π1(X) is the trivial
group, but if X is a circle (or South Africa), then π1(X) is the group of integers Z. The fundamental
group is very useful as an invariant, and we will also use it to prove interesting facts, for example: If
you have a map of Colorado (of any size, possibly warped or folded) and the map is in Colorado, then
there is a point on the map representing its own exact location.

The fundamental group is the first part of a wider field called Algebraic Topology.

Chilis:

Homework: Recommended

Prerequisites: Group Theory

Related to (but not required for): How Curved is a Potato? (W2); Cohomology via Sheaves (W4)

Trail Mix. (Mark, Wednesday–Saturday)
Is your mathematical hike getting a little too strenuous? Would you like to relax a bit with a class
that offers an unrelated topic every day, so you can pick and choose which days to attend, and that
does not expect you to do homework? If so, some Trail Mix may be just what you need to regain
energy. Individual descriptions of the four topics follow.

Day 1 ( , Wednesday): Perfect Numbers
Do you love 6 and 28? The ancient Greeks did, because each of these numbers is the sum of its own

divisors, not counting itself. Such integers are called perfect, and while a lot is known about them,
other things are not: Are there infinitely many? Are there any odd ones? Come hear about what is
known, and what perfect numbers have to do with the ongoing search for primes of a particular form,
called Mersenne primes — a search that has largely been carried out, with considerable success, by a
far-flung cooperative of individual “volunteer” computers.

Prerequisites: None
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Day 2 ( → , Thursday): Intersection Madness
When you intersect two ellipses, you can get four points, right? So why can’t you get four points

when you intersect two circles? Well, actually you can, and what’s more, two of the four points are
always in the same places! If this seems paradoxical (and, I hope, interesting), wait until we start
intersecting two cubic curves (given by polynomial equations of degree 3). There’s a “paradox” there
too, first pointed out by the Swiss mathematician Cramer in a letter to Euler, and the resolution of
that paradox leads to a “magic” property of the nine intersection points. If time permits, we’ll see
how that property (known as the Cayley-Bacharach theorem) gives elegant proofs of Pascal’s hexagon
theorem and of the existence of a group law on a cubic curve.

Prerequisites: None, although a little bit of linear algebra might show up.

Day 3 ( → , Friday): Integration by Parts and the Wallis Product
Integration by parts is one of only two truly general techniques known for finding antiderivatives

(the other is integration by substitution). In this class you’ll see (or review) this method, and two of
its applications: How to extend the factorial function, so that there is actually something like (1/2)!
(although the commonly used notation and terminology is a bit different), and how to derive the
famous product formula

π
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5
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which was first stated by John Wallis in 1655.

Prerequisites: Basic single-variable calculus

Day 4 ( → , Saturday): The Nine-Point Circle
There is some beautiful geometry hidden in and around every triangle. In particular, there are

several points that can qualify as “centers” of the triangle, but that are different unless the triangle is
equilateral. One of those points is the center of a circle that goes through nine related points, so it’s
not surprising that it’s called the nine-point circle. If you haven’t seen this (and the Euler line) but
you like plane Euclidean geometry, you’re in for a treat.

Prerequisites: None

Chilis: See individual descriptions above.

Homework: None

Prerequisites: See individual descriptions above.

Visualizing Groups. (Sara, Wednesday–Thursday)
If you know the basics of group theory, but want to gain a better intuitive understanding of groups,
this is the class for you. We will focus on pretty pictures, more commonly referred to as Cayley graphs.
On Day 1, we will define Cayley graphs, learn how to visualize subgroups and cosets, and learn a
simple way to recognize normal subgroups using a Cayley graph. On Day 2, we will look at direct and
semidirect products. Semidirect products are very cool. They allow you do things such as construct
nonabelian groups out of abelian groups. Without semidirect products, you might find yourself saying:
”Bippidy bazinga! I have a rotation group of a square (order 4) and a reflection group of a square
(order 2), and I want to put them together to make the symmetry group of a square D8, but the direct
product isn’t powerful enough to product a group as janky as D8. Wow, this really makes me sad.” If
you want to learn more about groups and not be sad, consider taking this class.

Chilis: →
Homework: Recommended
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Prerequisites: From group theory: definition of a group, the dihedral group, permutation groups,
normal subgroups. From graph theory: definition of a graph, graph isomorphism.

Related to (but not required for): Group Theory (W1); Trees! (W3)

11:15 Classes

Commutative Algebra and Algebraic Geometry (2/2). (Mark, Tuesday–Saturday)
A continuation of the week 1 class. If you’re thinking of joining, ask me to get an idea of what you
might need to catch up on (and/or find someone who took good notes during the first week).

Chilis: →
Homework: Optional

Prerequisites: Week 1 of this class, or the equivalent.

Related to (but not required for): Algebraic Number Theory (W1); Symmetries and Polynomials (W1);
Intro Ring Theory (W2); Modular Forms (W2); The Outer Automorphism of S6 (W2); Representation
Theory (1/2) (W3); Cohomology via Sheaves (W4)

Knot Theory. (Jeff, Tuesday–Saturday)
In the 1860s, Lord Kelvin developed the following theory of matter: atoms, the indivisible particles
that composed the universe, were actually tiny whirlwind vortices in the ether. He beleived that shape
of these vortices were tiny knots, and you could make compounds out of these knots by linking them
together. Inspired by the quest to classify atoms, a mathematician named Tait made a list of all knots
up to 10 crossings (no small feat, considering that there are around 250 of them.)
Kelvin’s theory turned out to be bunk (as both the idea of ether and tiny vortices were too crazy),
but mathematicians kept on thinking about knots. It took mathematicians nearly a hundred years to
realize that Tait’s list was wrong, and we still have a lot to learn about knots. We now study knots
not because they represent atoms, but because they are some of the simplest objects a topologist can
study: maps from the circle to 3-dimensional space. And despite these objects being so fundamental,
a classification of knots eludes mathematicians to this very day.
In this class, we’ll take the first step to classifying knots, by describing invariants of knots and giving
a procedure to (non-uniquely) describe every knot.

Chilis:

Homework: Optional

Prerequisites: None

Related to (but not required for): Topological Zoology (W3); The Fundamental Group (W4)

Machine Learning (No Neural Nets). (Linus, Tuesday–Saturday)
Machine learning is about getting examples of a function and guessing what that function is.

For example, let’s say you want to classify emails as spam or not spam. You have a large supply
of example emails which are already classified. You guess that the correct truth is some majority
function of words — such as ”If the email mentions at least three of medicine, cheap, rich, campaign,
virus, then it’s spam.” If your guess is correct, then how can you figure out which words to use? What
if instead of a perfect truth, there’s a 1% chance of error? Can you figure out words that give a 99%
success rate?

Okay, here’s a more complicated question: let’s say we have a large collection of Mathcamper board
game ratings. Not everyone has rated every game. If I haven’t played Spirit Island yet, then what’s
the best way to guess how much I would enjoy it? How confident should I be of my guess?

Chilis:

Homework: Recommended
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Prerequisites: Basic linear algebra; be willing to think about vectors in high-dimensional space. Pro-
gramming skill *not* needed.

Simple Models of Computation. (Pesto, Tuesday–Saturday)
Almost all programming languages are equally powerful—anything one of them can do, they all can.

We’ll talk about less powerful models of computation—ones that can’t even, say, tell whether two
numbers are equal. They’ll nevertheless save the day if you have to search through 200MB of emails
looking for something formatted like an address.1

This is a math class, not a programming one—we’ll talk about clever proofs for what those models
of computation can and can’t do.

Chilis:

Homework: Recommended

Prerequisites: None

The Continuum Hypothesis (2/2). (Susan, Tuesday–Saturday)
The exciting continuation!!!

Chilis:

Homework: Required

Prerequisites: Some knowledge of the ordinal numbers, particularly ω1. Stupid Games on Uncountable
Sets could function as a prereq.

1:10 Classes

Cohomology via Sheaves. (Apurva, Tuesday–Saturday)

Why could all the king’s horses and all the king’s men,
Not put Humpty Dumpty back together again?

Because Humpty Dumpty lacked sheaf datum. A sheaf is a mathematical tool that allows us to
glue local mathematical data together. In this class, we’ll learn how to use the locally constant sheaf
to compute topological invariants (cohomology) of spaces, which in turn enable us to use algebraic
techniques to study topology.

This will be an IBL class. This is NOT a class on sheaves, this is a class on cohomology of spaces.

Chilis: →
Homework: Required

Prerequisites: You should be able (and willing) to compute the rank and nullity of linear transforma-
tions. You should be familiar with the notions of “connected components” and “continuous functions”.

Related to (but not required for): Modular Forms (W2); The Fundamental Group (W4); Commutative
Algebra and Algebraic Geometry (2/2) (W4)

Combinatorial Designs. (Ania, Thursday–Saturday)
You probably know Set and Dobble games. Hopefully you think they are cool and “mathy”. Maybe
you are even curious about that math behind them? If so, this class is for you! It turns out that even
though at the first glance Set and Dobble seem to be completely different they do have a common

1http://www.xkcd.com/208

http://www.xkcd.com/208
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denominator. Both of them are examples of a combinatorial design, which is a structure of finite sets
that satisfies generalized concepts of balance and/or symmetry.

During the class we will explore the elementary theory describing those objects, prove basic relation-
ships between their parameters (including Fisher’s inequality and maybe theorem about symmetric
designs) and also analyze some specific designs (Hadamard design, Steiner Triple System, Kirkman
system). There will be many pretty pictures and fun problems (including solving a bit modified su-
doku and drawing fancy graphs!) and we will also look for the other examples of designs in everyday
life/math.

Chilis: →
Homework: Recommended

Prerequisites: Basics of finite combinatorics (inclusion-exclusion, binomial coefficients, etc.)

Infections, contractions, and tumors, Oh My! Agent Based Modeling of Biological Sys-
tems. (Angela Gallegos & Kamila Larripa, Tuesday–Saturday)
What do tumors, infections, and the uterus all have in common? Actually quite a bit more than you
might think! All three have dynamics that can be described using mathematics, and patterns that
can be explored when you look at interactions between different individualswhether those individuals
be tumor cells, humans, or muscle cells. In this course we will use NetLogo to explore how we can
computationally model these types of systems and you will get to explore your own research questions
in our week together!

Note that classes may run over time so that you will have time to work in the computer lab on your
homework and projects. You will work on modeling projects during the week and have the option of
presenting your results in class on the last day.

Chilis: →
Homework: Recommended

Prerequisites: Specific courses are less important, than comfort with mathematical abstraction (word
problems, for example) and computer programming is helpful.

Intersecting polynomials. (Tim!, Tuesday–Wednesday)
You might think that everything there is to know about one-variable real polynomials has been known
for hundreds of years. Except, in 2009, while bored at a faculty meeting, Kontsevich scribbled down
a brand new fact about polynomials. You’ll discover it.

Chilis:

Homework: Optional

Prerequisites: None

Ramsey Theory. (Misha, Tuesday–Saturday)
To a first approximation, Ramsey theory is about proving theorems that say “If we color all the whatsits
of a sufficiently large thingy with yea many colors, then we will be able to find a monochromatic
doodad.”

We’ll follow a meandering path between some results of this kind and results of a few other kinds.
Topics of interest include upper and lower bounds, clever constructions that everyone should see at
least once, and connections to number theory and geometry.

Chilis:

Homework: Recommended

Prerequisites: None
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Rational Points on Elliptic Curves. (Shiyue, Tuesday–Saturday)
Diophantine equations are equations in n variables with integer coefficients where you are looking for
integer solutions. For instance, Fermat’s Last Theorem says that the Diophantine equation xn + yn =
zn for n > 2 has no nontrivial solutions.

The higher the degree of the equation, the harder it is to analyze. For equation of degree 2, we will
show how to find all solutions using geometry of conic sections (ellipses, hyperbolae, and parabolae).
Most of the class will focus on equations of degree 3, which correspond to a family of curves called
elliptic curves. The structure of the solutions in this case is given by Mordell’s Theorem, which
describes the group structure of rational points on an elliptic curve. We won’t prove the theorem in its
most general form, but only focus on points of finite order. But even these special cases will help you
get an idea of the tools needed for the full proof. More broadly, this course serves as an introduction
to the field of arithmetic geometry, in which insights from algebraic geometry are applied to questions
in number theory.

Chilis:

Homework: Recommended

Prerequisites: Group Theory (cyclic groups, direct products, quotient groups; the Week 1 introductory
class will be sufficient).

Related to (but not required for): Group Theory (W1); Intro Number Theory (1/2) (W1); Intersecting
Curves (W2); Intro Number Theory (2/2) (W2); Commutative Algebra and Algebraic Geometry(1/2)
(W3)

Colloquium

Is Mathematics Biologys Next Microscope? (Angela Gallegos & Kamila Larripa, Tuesday)
Mathematical biology is poised for explosive growth as biology becomes more quantitative. The
need for mathematical and computational approaches to organize this information is acute. The best
models not only shed light on how a process works, but might predict what may follow or propose new
experiments to try. The mathematics can be relatively simple; it is the novel application that allows
us to peek into a biological system and suggest directions for future experiments. We will discuss
some of our favorite examples of mathematical modeling applications in our work including cancer
treatment and population biology.

Quantum Hack. (J-Lo, Wednesday)
If someone were to develop a viable, decently-sized quantum computer, internet security as we know it
today would cease to exist. Come to learn what mathematical computations a quantum computer can
do that a classical computer can’t — and why there may still be hope for our non-quantum internet
to become quantum-secure.

Quantum Liquids. (Scott Strong, Thursday)
Mathematical physics is a branch of applied mathematics dealing with physical problems. Mathemat-
ical physicist Robbert Dijkgraaf, who was interviewed by Numberphile in 2017 [1], discusses how the
first quantum revolution has left mathematicians catching up with both its concepts and language. In
fact, he asserts the need for “quantum mathematicians.” Perhaps he says this because we stand at the
precipice of a paradigm shift that will bring about great change in the way we work with information
acquisition, communication, and simulation. [2]
While mechanics and electromagnetism tend to be compulsory courses due to their alignment with
single and multivariate calculus, quantum mechanics is often seen as a specialized class. For physicists
it’s perceived as heavily historical, while it is considered highly technical by mathematicians. Since
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it is important that young mathematicians gain interest in the field, I will provide an experimental
lecture that aims to start from knowledge of single-variable calculus and create models leading to a
quantum mechanical prediction.

[1] https://youtu.be/m6rfpQXzXu0
[2] https://youtu.be/kcTGzE_AtBc

Building machines that learn and think like people. (Josh Tenenbaum, Friday)
Increasingly our lives are filled with artificial intelligence technology: machines that do things we used
to think only humans could do. But we dont yet have any real AI. We dont have machines with
anything like the flexible, general-purpose commonsense intelligence that lets humans do everything
they do to get around in the world. Whats missing, and how could we build it?
Recent successes in artificial intelligence and machine learning have been largely driven by methods for
sophisticated pattern recognition, including deep neural networks and other deep learning methods.
But human intelligence is more than just pattern recognition. At the heart of human common sense is
our ability to model the world: to explain and understand what we see, to imagine things we could see
but havent yet, to solve problems and plan actions to make these things real, and to build new models
as we learn more about the world. I will talk about our recent work attempting to reverse-engineer
these capacities, drawing on several kinds of mathematical and computational tools: probabilistic
(Bayesian) inference, probabilistic programming, program synthesis, and video game engines. I will
show examples of how these tools let us build mathematical models of human intelligence, and also
make AI systems that are smarter in more human-like ways.

Visitor Bios

Angela Gallegos. Angela wanted to work in biology and physiology, but didn’t like blood or needles,
and so ended up pursuing mathematical biology. Her research has been in mathematical modeling
of biological topics including the uterus, bacteria, cancer dynamics, and crocodilia populations! She
and her collaborator and friend, Kami, will be teaching about discrete computational ways to model
these kinds of subjects while at Mathcamp this summer. In addition to math, Angela enjoys running
(although is getting slower) and trying new things. She is currently living in Quito, Ecuador while on
sabbatical, improving her spanish and learning more about cooking. She has two dogs now–one from
her time living in Bogota, Colombia, and the second from Ecuador! She is incredibly excited for her
first time at Mathcamp!

Kami Larripa. I love using mathematics to model biological systems. Some of my recent projects
have included looking at how inflammation from a bacterial infection affects the cardiovascular system,
and how immunotherapies for cancer can be improved. Angela and I will teach a class about math
models in biology, and mentor student projects.

Fun fact: I met my co-instructor Angela at the Summer Program for Women in Mathematics at
George Washington University when I was an undergraduate student. That program was pivotal to
my career path, and I am so excited to have the opportunity to be part of a similar program!

I live in Humboldt, California, and love to bike, surf, and hike with my family.

Greg Burnham. Greg was a camper in ’04-’06 and a JC in ’07, ’08, ’10. He works at an artificial
intelligence research lab called Elemental Cognition and lives in Brooklyn, NY.

Scott Strong. Scott Strong is a mathematical physicist who studies the geometric dynamics of
vortex lines in quantum liquids. Of particular interest is understanding the mathematical models by
which quantum turbulence relaxes to more highly correlated states through an interplay between the
geometry of the vortices and vibrations of the medium. As a Teaching Professor in the Department

https://youtu.be/m6rfpQXzXu0
https://youtu.be/kcTGzE_AtBc
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of Applied Mathematics and Statistics at the Colorado School of Mines, his focus is on undergraduate
education and frequently teaches multivariate calculus and differential equations.
Josh Tenenbaum. Josh is a professor of cognitive science and a member of the MIT Computer
Science and Artificial Intelligence Lab (CSAIL). In his research, he builds mathematical models of
human and machine learning, reasoning, and perception. His interests also include neural networks,
information theory, and statistical inference.
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